Method for Computing Emotions of Tweets with an Emoticon

Chengzhi Jiang, T. Kumamoto
{"title":"Method for Computing Emotions of Tweets with an Emoticon","authors":"Chengzhi Jiang, T. Kumamoto","doi":"10.1145/3366030.3366071","DOIUrl":null,"url":null,"abstract":"In text-based message exchange services, non-verbal expressions, such as emoticons, are typically used. However, their usage is intuitive, and many questions persist as to how emoticons affect the emotional aspect of messages. Therefore, we formulate the effect of emoticons on emotions of tweets with an emoticon and propose a method for computing emotion values of tweets with an emoticon. Initially, emotion values of emoticons and those of tweets with an emoticon are determined based on results of questionnaires. Subsequently, emotion values of tweets are calculated via two sentiment analysis tools. We then apply multiple regression analysis to the three types of emotion values, and thus we obtain multiple regression equations to compute emotion values of tweets with an emoticon. Our performance evaluation indicates that the proposed method is effective in terms of computing values of the following nine emotions: \"Sorrow,\" \"Disgust,\" \"Relief,\" \"Fear,\" \"Liking,\" \"Joy,\" \"Surprise,\" \"Anger,\" and \"Shame.\"","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In text-based message exchange services, non-verbal expressions, such as emoticons, are typically used. However, their usage is intuitive, and many questions persist as to how emoticons affect the emotional aspect of messages. Therefore, we formulate the effect of emoticons on emotions of tweets with an emoticon and propose a method for computing emotion values of tweets with an emoticon. Initially, emotion values of emoticons and those of tweets with an emoticon are determined based on results of questionnaires. Subsequently, emotion values of tweets are calculated via two sentiment analysis tools. We then apply multiple regression analysis to the three types of emotion values, and thus we obtain multiple regression equations to compute emotion values of tweets with an emoticon. Our performance evaluation indicates that the proposed method is effective in terms of computing values of the following nine emotions: "Sorrow," "Disgust," "Relief," "Fear," "Liking," "Joy," "Surprise," "Anger," and "Shame."
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Emoticon计算tweet情绪的方法
在基于文本的消息交换服务中,通常使用非语言表达,例如表情符号。然而,它们的使用是直观的,关于表情符号是如何影响信息的情感方面的许多问题仍然存在。因此,我们制定了表情符号对带有表情符号的推文情绪的影响,并提出了一种计算带有表情符号的推文情绪值的方法。首先,emoticon和带有emoticon的tweet的情感值是根据问卷调查的结果确定的。随后,通过两种情感分析工具计算推文的情感值。然后,我们对这三种类型的情感值进行多元回归分析,从而得到多元回归方程来计算带有表情符号的推文的情感值。我们的性能评估表明,所提出的方法在计算以下九种情绪的值方面是有效的:“悲伤”,“厌恶”,“解脱”,“恐惧”,“喜欢”,“喜悦”,“惊喜”,“愤怒”和“羞耻”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Crawling Method with No Parameters for Geo-social Data based on Road Maps PLDSD Fake News Classification Based on Subjective Language Computing Ranges for Temporal Parameters of Composed Web Services Microbiological Water Quality Test Results Extraction from Mobile Photographs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1