{"title":"Boot Log Anomaly Detection with K-Seen-Before","authors":"Johan Garcia, Tobias Vehkajarvi","doi":"10.1109/COMPSAC48688.2020.0-140","DOIUrl":null,"url":null,"abstract":"Software development for embedded systems, in particular code which interacts with boot-up procedures, can pose considerable challenges. In this work we propose the K-Seen-Before (KSB) approach to detect and highlight anomalous boot log messages, thus relieving developers from repeatedly having to manually examine boot log files of 1000+ lines. We describe the KSB instance based anomaly detection system and its relation to KNN. An industrial data set related to development of high-speed networking equipment is utilized to examine the effects of the KSB parameters on the amount of detected anomalies. The obtained results highlight the utility of KSB and provide indications of suitable KSB parameter settings for obtaining an appropriate trade-off for the cognitive workload of the developer with regards to log file analysis.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Software development for embedded systems, in particular code which interacts with boot-up procedures, can pose considerable challenges. In this work we propose the K-Seen-Before (KSB) approach to detect and highlight anomalous boot log messages, thus relieving developers from repeatedly having to manually examine boot log files of 1000+ lines. We describe the KSB instance based anomaly detection system and its relation to KNN. An industrial data set related to development of high-speed networking equipment is utilized to examine the effects of the KSB parameters on the amount of detected anomalies. The obtained results highlight the utility of KSB and provide indications of suitable KSB parameter settings for obtaining an appropriate trade-off for the cognitive workload of the developer with regards to log file analysis.