Indoor-outdoor image classification

M. Szummer, Rosalind W. Picard
{"title":"Indoor-outdoor image classification","authors":"M. Szummer, Rosalind W. Picard","doi":"10.1109/CAIVD.1998.646032","DOIUrl":null,"url":null,"abstract":"We show how high-level scene properties can be inferred from classification of low-level image features, specifically for the indoor-outdoor scene retrieval problem. We systematically studied the features of: histograms in the Ohta color space; multiresolution, simultaneous autoregressive model parameters; and coefficients of a shift-invariant DCT. We demonstrate that performance is improved by computing features on subblocks, classifying these subblocks, and then combining these results in a way reminiscent of stacking. State of the art single-feature methods are shown to result in about 75-86% performance, while the new method results in 90.3% correct classification, when evaluated on a diverse database of over 1300 consumer images provided by Kodak.","PeriodicalId":360087,"journal":{"name":"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"785","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIVD.1998.646032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 785

Abstract

We show how high-level scene properties can be inferred from classification of low-level image features, specifically for the indoor-outdoor scene retrieval problem. We systematically studied the features of: histograms in the Ohta color space; multiresolution, simultaneous autoregressive model parameters; and coefficients of a shift-invariant DCT. We demonstrate that performance is improved by computing features on subblocks, classifying these subblocks, and then combining these results in a way reminiscent of stacking. State of the art single-feature methods are shown to result in about 75-86% performance, while the new method results in 90.3% correct classification, when evaluated on a diverse database of over 1300 consumer images provided by Kodak.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室内外图像分类
我们展示了如何从低级图像特征的分类中推断出高级场景属性,特别是针对室内外场景检索问题。我们系统地研究了Ohta颜色空间中直方图的特征;多分辨率、同步自回归模型参数;和平移不变DCT的系数。我们证明,通过计算子块上的特征,对这些子块进行分类,然后以一种让人想起堆叠的方式组合这些结果,可以提高性能。最先进的单一特征方法显示出大约75-86%的性能,而新方法的分类正确率为90.3%,当在柯达提供的超过1300张消费者图像的不同数据库中进行评估时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selecting good keys for triangle-inequality-based pruning algorithms Viewpoint-invariant indexing for content-based image retrieval Image organization and retrieval using a flexible shape model Commercial video retrieval by induced semantics Video skimming and characterization through the combination of image and language understanding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1