Automatic segmentation of neonatal brain magnetic resonance images

C. N. Devi, A. Chandrasekharan, V. Sundararaman, Z. C. Alex
{"title":"Automatic segmentation of neonatal brain magnetic resonance images","authors":"C. N. Devi, A. Chandrasekharan, V. Sundararaman, Z. C. Alex","doi":"10.1109/ICCSP.2014.6949920","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of magnetic resonance imaging of the neonatal brain, presents the challenges involved in segmenting the neonatal brain images and reviews the existing techniques for automatic segmentation, including atlas-based probabilistic segmentations and morphology based brain segmentation. It compares the various methods in practice and highlights their limitations, particularly the inadequacies in segmenting the myelinated portions of the brain. It also proposes a new approach to overcome these shortcomings.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6949920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper provides an overview of magnetic resonance imaging of the neonatal brain, presents the challenges involved in segmenting the neonatal brain images and reviews the existing techniques for automatic segmentation, including atlas-based probabilistic segmentations and morphology based brain segmentation. It compares the various methods in practice and highlights their limitations, particularly the inadequacies in segmenting the myelinated portions of the brain. It also proposes a new approach to overcome these shortcomings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新生儿脑磁共振图像的自动分割
本文综述了新生儿大脑的磁共振成像,提出了新生儿大脑图像分割所涉及的挑战,并回顾了现有的自动分割技术,包括基于阿特拉斯的概率分割和基于形态学的大脑分割。它比较了实践中的各种方法,并强调了它们的局限性,特别是在分割大脑髓鞘部分方面的不足。它还提出了一种克服这些缺点的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of dense dielectric patch antenna for wireless applications Texture image retrieval by combining local binary pattern and discontinuity binary pattern Dynamic beacon based and load balanced geo routing in MANETs Analysis of leakage current and leakage power reduction during write operation in CMOS SRAM cell HDL implementation of 128- bit Fused Multiply Add unit for multi mode SoC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1