Encrypted Information transmission by Enhanced Steganography and Image Transformation

{"title":"Encrypted Information transmission by Enhanced Steganography and Image Transformation","authors":"","doi":"10.4018/ijdai.297110","DOIUrl":null,"url":null,"abstract":"A deep neural network is used to develop a covert communication and textual data extraction strategy based on steganography and picture compression in such work. The original input textual image and cover image are both pre-processed before the covert text-based pictures are separated and implanted into the least significant bit of the cover object picture element using spatial steganography. Following that, stego-images are compressed and transformed(by using Leh Transformation) to provide a higher-quality image while also saving storage space at the sender's end. After then, the stego-image will be transmitted to the receiver over a communication link. At the receiver's end, steganography and compression are then reversed. This work contains a plethora of issues, making it an intriguing subject to pursue. The most crucial component of this task is choosing the right steganography and picture compression technology. The proposed technology, which combines picture steganography with compression and transformation, delivers higher peak signal-to-noise efficiency.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.297110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A deep neural network is used to develop a covert communication and textual data extraction strategy based on steganography and picture compression in such work. The original input textual image and cover image are both pre-processed before the covert text-based pictures are separated and implanted into the least significant bit of the cover object picture element using spatial steganography. Following that, stego-images are compressed and transformed(by using Leh Transformation) to provide a higher-quality image while also saving storage space at the sender's end. After then, the stego-image will be transmitted to the receiver over a communication link. At the receiver's end, steganography and compression are then reversed. This work contains a plethora of issues, making it an intriguing subject to pursue. The most crucial component of this task is choosing the right steganography and picture compression technology. The proposed technology, which combines picture steganography with compression and transformation, delivers higher peak signal-to-noise efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强隐写和图像变换的加密信息传输
在该工作中,利用深度神经网络开发了一种基于隐写和图像压缩的秘密通信和文本数据提取策略。对原始输入文本图像和封面图像进行预处理,然后利用空间隐写技术将基于文本的隐蔽图像分离并植入到封面对象图像元素的最低有效位。在此之后,隐写图像被压缩和转换(通过使用Leh Transformation),以提供更高质量的图像,同时也节省了发送端存储空间。之后,隐写图像将通过通信链路传输到接收器。在接收端,隐写和压缩被逆转。这项工作包含了大量的问题,使其成为一个有趣的主题。这项任务最关键的部分是选择正确的隐写和图像压缩技术。该技术将图像隐写与压缩和变换相结合,提供了更高的峰值信噪比效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object Detection Using Region-Conventional Neural Network (RCNN) and OpenCV Machine Learning Techniques-Based Banking Loan Eligibility Prediction Efficient Detection of Humans in Flames Using HOG as a Feature Criterion in Machine Learning Smart System Using IoT to Protect the Kitchen From Fire Distributed Business Process Discovery in Cloud Clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1