Thermal and energy analysis of DMTA tests

A. Chrysochoos, O. Arnould
{"title":"Thermal and energy analysis of DMTA tests","authors":"A. Chrysochoos, O. Arnould","doi":"10.46298/jtcam.9726","DOIUrl":null,"url":null,"abstract":"This paper investigates the suitability of the isothermal linear viscoelastic framework to describe the behavior of polymers observed during DMTA tests. A good interpretation of these tests is important because, in practice, they are used to construct master curves using the time-temperature superposition principle at small strain. These curves are then considered to predict the material behavior under experimentally unreachable thermal and/or loading frequency conditions. Currently, the DMTA protocol neglects the temperature variations induced by the deformation of polymers. We wonder if these temperature variations can have an influence on the measurement of dynamic moduli. To answer this question, quantitative infrared techniques were developed and used to assess small temperature variations of samples undergoing cyclic loadings during mechanical spectrometry tests. Thermal and mechanical data were used to quantify the viscous dissipated and the thermoelastic coupling energies that can be both associated with the hysteretic stress-strain response of polymers. Energy balances were then performed to quantify the relative importance of dissipative and thermoelastic coupling heat sources. From the energy standpoint, it is found that the thermoelastic energy rate was dozens of times higher than the dissipation. Especially at low frequencies, thermoelastic effects can have a greater influence on the loss modulus value than viscosity.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.9726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the suitability of the isothermal linear viscoelastic framework to describe the behavior of polymers observed during DMTA tests. A good interpretation of these tests is important because, in practice, they are used to construct master curves using the time-temperature superposition principle at small strain. These curves are then considered to predict the material behavior under experimentally unreachable thermal and/or loading frequency conditions. Currently, the DMTA protocol neglects the temperature variations induced by the deformation of polymers. We wonder if these temperature variations can have an influence on the measurement of dynamic moduli. To answer this question, quantitative infrared techniques were developed and used to assess small temperature variations of samples undergoing cyclic loadings during mechanical spectrometry tests. Thermal and mechanical data were used to quantify the viscous dissipated and the thermoelastic coupling energies that can be both associated with the hysteretic stress-strain response of polymers. Energy balances were then performed to quantify the relative importance of dissipative and thermoelastic coupling heat sources. From the energy standpoint, it is found that the thermoelastic energy rate was dozens of times higher than the dissipation. Especially at low frequencies, thermoelastic effects can have a greater influence on the loss modulus value than viscosity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DMTA测试的热能和能量分析
本文研究了等温线性粘弹性框架描述DMTA试验中观察到的聚合物行为的适用性。对这些试验的良好解释很重要,因为在实践中,它们用于在小应变下使用时间-温度叠加原理构造主曲线。然后考虑这些曲线来预测材料在实验无法达到的热和/或加载频率条件下的行为。目前,DMTA协议忽略了由聚合物变形引起的温度变化。我们想知道这些温度变化是否会对动态模量的测量产生影响。为了回答这个问题,定量红外技术被开发出来,并用于评估在机械光谱测试中经历循环载荷的样品的小温度变化。热学和力学数据被用来量化黏性耗散和热弹性耦合能,这两者都可以与聚合物的滞后应力-应变响应相关联。然后进行能量平衡,以量化耗散和热弹性耦合热源的相对重要性。从能量的角度来看,发现热弹性能率比耗散高几十倍。特别是在低频率下,热弹性效应对损失模量的影响比粘度更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack branching at low tip speeds: spilling the T The average conformation tensor of inter-atomic bonds as an alternative state variable to the strain tensor: definition and first application ś the case of nanoelasticity Reduced order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model Plasticity and ductility of an anisotropic recrystallized AA2198 Al-Cu-Li alloy in T3 and T8 conditions during proportional and non-proportional loading paths: simulations and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1