Signal subspace decomposition of ideal covariance matrices

S. Sathyanarayana Rao, R. Raman
{"title":"Signal subspace decomposition of ideal covariance matrices","authors":"S. Sathyanarayana Rao, R. Raman","doi":"10.1109/SSAP.1992.246782","DOIUrl":null,"url":null,"abstract":"Xu and Kailath have proposed (1992) a fast algorithm for signal subspace decomposition that exploits the special matrix structure associated with signal subspace algorithms. This work presents some modifications which eliminate the need to estimate the noise eigenvalue in order to estimate the orthonormal basis of an ideal covariance matrix. The algorithm yields the exact signal subspace and in so doing yields the exact subspace dimension. The modifications presented reduce the computational load by at least a factor of four.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Xu and Kailath have proposed (1992) a fast algorithm for signal subspace decomposition that exploits the special matrix structure associated with signal subspace algorithms. This work presents some modifications which eliminate the need to estimate the noise eigenvalue in order to estimate the orthonormal basis of an ideal covariance matrix. The algorithm yields the exact signal subspace and in so doing yields the exact subspace dimension. The modifications presented reduce the computational load by at least a factor of four.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理想协方差矩阵的信号子空间分解
Xu和Kailath(1992)提出了一种快速的信号子空间分解算法,该算法利用了与信号子空间算法相关的特殊矩阵结构。这项工作提出了一些修改,消除了为了估计理想协方差矩阵的正交基而需要估计噪声特征值的需要。该算法产生精确的信号子空间,从而产生精确的子空间维数。所提出的修改将计算负荷减少了至少4倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear prediction based on higher order statistics by a new criterion Fourth-order cumulant structure forcing: application to blind array processing Wideband spatial processing with wavelet transforms Simultaneous CFAR detection and frequency estimation of a sinusoidal signal in noise Least-squares reconstruction of an image from its noisy observations using the bispectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1