Region analysis of abdominal CT scans using image partition forests

S. Golodetz, I. Voiculescu, S. Cameron
{"title":"Region analysis of abdominal CT scans using image partition forests","authors":"S. Golodetz, I. Voiculescu, S. Cameron","doi":"10.1145/1456223.1456312","DOIUrl":null,"url":null,"abstract":"The segmentation of medical scans (CT, MRI, etc.) and the subsequent identification of key features therein, such as organs and tumours, is an important precursor to many medical imaging applications. It is a difficult problem, not least because of the extent to which the shapes of organs can vary from one image to the next. One interesting approach is to start by partitioning the image into a region hierarchy, in which each node represents a contiguous region of the image. This is a well-known approach in the literature: the resulting hierarchy is variously referred to as a partition tree, an image tree, or a semantic segmentation tree. Such trees summarise the image information in a helpful way, and allow efficient searches for regions which satisfy certain criteria. However, once built, the hierarchy tends to be static, making the results very dependent on the initial tree construction process (which, in the case of medical images, is done independently of any anatomical knowledge we might wish to bring to bear). In this paper, we describe our approach to the automatic feature identification problem, in particular explaining why modifying the hierarchy at a later stage can be useful, and how it can be achieved. We illustrate the efficacy of our method with some preliminary results showing the automatic identification of ribs.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The segmentation of medical scans (CT, MRI, etc.) and the subsequent identification of key features therein, such as organs and tumours, is an important precursor to many medical imaging applications. It is a difficult problem, not least because of the extent to which the shapes of organs can vary from one image to the next. One interesting approach is to start by partitioning the image into a region hierarchy, in which each node represents a contiguous region of the image. This is a well-known approach in the literature: the resulting hierarchy is variously referred to as a partition tree, an image tree, or a semantic segmentation tree. Such trees summarise the image information in a helpful way, and allow efficient searches for regions which satisfy certain criteria. However, once built, the hierarchy tends to be static, making the results very dependent on the initial tree construction process (which, in the case of medical images, is done independently of any anatomical knowledge we might wish to bring to bear). In this paper, we describe our approach to the automatic feature identification problem, in particular explaining why modifying the hierarchy at a later stage can be useful, and how it can be achieved. We illustrate the efficacy of our method with some preliminary results showing the automatic identification of ribs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像分割森林的腹部CT扫描区域分析
医学扫描(CT, MRI等)的分割和随后识别其中的关键特征,如器官和肿瘤,是许多医学成像应用的重要前提。这是一个困难的问题,尤其是因为器官的形状在不同的图像中会有很大的变化。一种有趣的方法是首先将图像划分为区域层次结构,其中每个节点表示图像的一个连续区域。这是文献中众所周知的一种方法:所得到的层次结构被称为分区树、图像树或语义分割树。这样的树以一种有用的方式总结了图像信息,并允许对满足某些标准的区域进行有效搜索。然而,一旦建立,层次结构往往是静态的,使得结果非常依赖于初始树的构建过程(在医学图像的情况下,这是独立于我们可能希望带来的任何解剖学知识)。在本文中,我们描述了自动特征识别问题的方法,特别是解释了为什么在后期修改层次结构是有用的,以及如何实现。我们用一些显示肋骨自动识别的初步结果来说明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel cache management strategy for semantic caching in mobile environment Evolutionary multiobjective optimization and multiobjective fuzzy system design Network security simulation and evaluation A software based approach for autonomous projectile attitude and position estimation Fatigue level estimation of bill based on feature-selected acoustic energy pattern by using supervised SOM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1