An assessment of ten-fold and Monte Carlo cross validations for time series forecasting

Rigoberto Fonseca, P. Gómez-Gil
{"title":"An assessment of ten-fold and Monte Carlo cross validations for time series forecasting","authors":"Rigoberto Fonseca, P. Gómez-Gil","doi":"10.1109/ICEEE.2013.6676075","DOIUrl":null,"url":null,"abstract":"On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

On a meta-learning process, the key is to build a reliable meta-training data set, which requires the best model for a specific sample. In the other hand, the uncertainty of expected accuracy of a particular model increases when data depend on time. Then, during meta-learning, an accurate validation of the reliability of the involved models is critical. This paper compares the applicability of two of the most used methods for validating forecasting models: ten-fold and Monte Carlo cross validations. Experimental results, using time series of the NN3 tournament, found that Monte Carlo cross validation is more stable than ten-fold cross validation for selecting the best forecasting model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对时间序列预测的十倍交叉验证和蒙特卡罗交叉验证的评估
在元学习过程中,关键是建立一个可靠的元训练数据集,这需要针对特定样本的最佳模型。另一方面,当数据依赖于时间时,特定模型的预期精度的不确定性会增加。然后,在元学习过程中,对所涉及模型的可靠性进行准确验证是至关重要的。本文比较了验证预测模型的两种最常用方法的适用性:十倍交叉验证和蒙特卡罗交叉验证。利用NN3锦标赛时间序列的实验结果发现,在选择最佳预测模型时,蒙特卡罗交叉验证比十倍交叉验证更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization of complex networks of fractional order nonlinear systems Approximate jitter probability in the breakpoints of genome copy number variations Optical and structural characterization of antimony doped zinc oxide single crystal Modeling of a greenhouse using Particle Swarm Optimization Influence of recombination on the energy and heat balance equations for a bipolar semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1