{"title":"Genetic algorithm for Traveling Salesman Problem","authors":"Haojie Xu, Yisu Ge, Guodao Zhang","doi":"10.1145/3581792.3581798","DOIUrl":null,"url":null,"abstract":"Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.","PeriodicalId":436413,"journal":{"name":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581792.3581798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.