Genetic algorithm for Traveling Salesman Problem

Haojie Xu, Yisu Ge, Guodao Zhang
{"title":"Genetic algorithm for Traveling Salesman Problem","authors":"Haojie Xu, Yisu Ge, Guodao Zhang","doi":"10.1145/3581792.3581798","DOIUrl":null,"url":null,"abstract":"Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.","PeriodicalId":436413,"journal":{"name":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581792.3581798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旅行商问题的遗传算法
旅行商问题(TSP)是最难以找到最优解的np困难问题之一。许多启发式算法被用于在有限时间内找到次优解。本文采用遗传算法求解TSP,并利用启发式策略对不同交叉和变异方法的性能进行了评价。以TSPLIB为例,设计了4个不同参数的实验。部分映射交叉和旋转突变结合子代-亲代竞争策略得到了最优的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Incident Detection System Based on Video Analysis Research on Object Tracking Technology Based on Region Proposal Siamese Network Motorcycle Helmet Detection and Usage Classification in the Philippines using YOLOv5 Algorithm The Spatial Topological Shape of the Rough Surface is Simulated and Generated by a New Gaussian Filtering Algorithm Route Optimization for Sailing Vessels using Artificial Intelligence Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1