On the Relevance of Cross-project Learning with Nearest Neighbours for Commit Message Generation

K. Etemadi, Monperrus Martin
{"title":"On the Relevance of Cross-project Learning with Nearest Neighbours for Commit Message Generation","authors":"K. Etemadi, Monperrus Martin","doi":"10.1145/3387940.3391488","DOIUrl":null,"url":null,"abstract":"Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.","PeriodicalId":309659,"journal":{"name":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387940.3391488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最近邻的跨项目学习与提交消息生成的相关性研究
提交消息在软件维护和发展中扮演着重要的角色。尽管如此,开发人员经常不能产生高质量的消息。近年来,已经提出了许多提交消息生成方法来解决这个问题。其中一些方法是基于神经机器翻译(NMT)技术。研究表明,尽管NNGen算法比NMT算法更简单、更快,但其性能优于现有的基于NMT的方法。在本文中,我们表明NNGen在大多数情况下没有利用跨项目学习。我们还表明,在不使用跨项目学习的情况下,现有的NNGen方法有一个更简单、更快的变体,在BLEU_4分数方面优于它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Systematic Mapping on Software Engineering for Robotic Systems: A Software Quality Perspective Generating API Test Data Using Deep Reinforcement Learning Human Factors in the Study of Automatic Software Repair: Future Directions for Research with Industry Strategies for Crowdworkers to Overcome Barriers in Competition-based Software Crowdsourcing Development Centralized Generic Interfaces in Hardware/Software Co-design for AI Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1