{"title":"The role of attribute selection in Deep ANNs learning framework for high-frequency financial trading","authors":"Monira Essa Aloud","doi":"10.1002/isaf.1466","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In financial trading, technical and quantitative analysis tools are used for the development of decision support systems. Although these traditional tools are useful, new techniques in the field of machine learning have been developed for time-series forecasting. This paper analyses the role of attribute selection on the development of a simple deep-learning ANN (D-ANN) multi-agent framework to accomplish a profitable trading strategy in the course of a series of trading simulations in the foreign exchange market. The paper evaluates the performance of the D-ANN multi-agent framework over different time spans of high-frequency (HF) intraday asset time-series data and determines how a set of the framework attributes produces effective forecasting for profitable trading. The paper shows the existence of predictable short-term price trends in the market time series, and an understanding of the probability of price movements may be useful to HF traders. The results of this paper can be used to further develop financial decision-support systems and autonomous trading strategies for the financial market.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"27 2","pages":"43-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1466","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 3
Abstract
In financial trading, technical and quantitative analysis tools are used for the development of decision support systems. Although these traditional tools are useful, new techniques in the field of machine learning have been developed for time-series forecasting. This paper analyses the role of attribute selection on the development of a simple deep-learning ANN (D-ANN) multi-agent framework to accomplish a profitable trading strategy in the course of a series of trading simulations in the foreign exchange market. The paper evaluates the performance of the D-ANN multi-agent framework over different time spans of high-frequency (HF) intraday asset time-series data and determines how a set of the framework attributes produces effective forecasting for profitable trading. The paper shows the existence of predictable short-term price trends in the market time series, and an understanding of the probability of price movements may be useful to HF traders. The results of this paper can be used to further develop financial decision-support systems and autonomous trading strategies for the financial market.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.