{"title":"A Regression Method for real-time video quality evaluation","authors":"M. T. Vega, D. Mocanu, A. Liotta","doi":"10.1145/3007120.3007125","DOIUrl":null,"url":null,"abstract":"No-Reference (NR) metrics provide a mechanism to assess video quality in an ever-growing wireless network. Their low computational complexity and functional characteristics make them the primary choice when it comes to realtime content management and mobile streaming control. Unfortunately, common NR metrics suffer from poor accuracy, particularly in network-impaired video streams. In this work, we introduce a regression-based video quality metric that is simple enough for real-time computation on thin clients, and comparably as accurate as state-of-the-art Full-Reference (FR) metrics, which are functionally and computationally inviable in real-time streaming. We benchmark our metric against the FR metric VQM (Video Quality Metric), finding a very strong correlation factor.","PeriodicalId":394387,"journal":{"name":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007120.3007125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
No-Reference (NR) metrics provide a mechanism to assess video quality in an ever-growing wireless network. Their low computational complexity and functional characteristics make them the primary choice when it comes to realtime content management and mobile streaming control. Unfortunately, common NR metrics suffer from poor accuracy, particularly in network-impaired video streams. In this work, we introduce a regression-based video quality metric that is simple enough for real-time computation on thin clients, and comparably as accurate as state-of-the-art Full-Reference (FR) metrics, which are functionally and computationally inviable in real-time streaming. We benchmark our metric against the FR metric VQM (Video Quality Metric), finding a very strong correlation factor.