Classification encryption via compressed permuted measurement matrices

Dimitris Milioris
{"title":"Classification encryption via compressed permuted measurement matrices","authors":"Dimitris Milioris","doi":"10.1109/INFCOMW.2016.7562124","DOIUrl":null,"url":null,"abstract":"In this paper we present an efficient encryption system based on Compressive Sensing for topic detection and classification in Twitter. The proposed method first employs Joint Complexity to perform topic detection. Then based on the spatial nature of the data, we apply the theory of Compressive Sensing to perform classification from a small number of random sample measurements. The breakthrough of the method is the encryption based on the permutation of measurements which are generated when solving the classification optimization problem. The experimental evaluation with real data from Twitter presents the robustness of the encryption accuracy, without using a specific cryptographic layer, while maintaining a low computational complexity.","PeriodicalId":348177,"journal":{"name":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2016.7562124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present an efficient encryption system based on Compressive Sensing for topic detection and classification in Twitter. The proposed method first employs Joint Complexity to perform topic detection. Then based on the spatial nature of the data, we apply the theory of Compressive Sensing to perform classification from a small number of random sample measurements. The breakthrough of the method is the encryption based on the permutation of measurements which are generated when solving the classification optimization problem. The experimental evaluation with real data from Twitter presents the robustness of the encryption accuracy, without using a specific cryptographic layer, while maintaining a low computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过压缩排列度量矩阵进行分类加密
本文提出了一种基于压缩感知的Twitter话题检测与分类加密系统。该方法首先采用联合复杂度进行主题检测。然后,基于数据的空间性质,我们应用压缩感知理论从少量随机样本测量中进行分类。该方法的突破点是在求解分类优化问题时,基于测量值的排列进行加密。使用Twitter真实数据进行的实验评估表明,在不使用特定加密层的情况下,加密精度具有鲁棒性,同时保持了较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demonstration of TADA: A tool for automatic detection of AQM Revisiting AS-level graph reduction Implementation of secure 6LoWPAN communications for tactical wireless sensor networks Delay tolerant video upload from public vehicles Dynamic sketching over distributed data streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1