auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data

Chirag Nagpal, Willa Potosnak, A. Dubrawski
{"title":"auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data","authors":"Chirag Nagpal, Willa Potosnak, A. Dubrawski","doi":"10.48550/arXiv.2204.07276","DOIUrl":null,"url":null,"abstract":"Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.","PeriodicalId":231229,"journal":{"name":"Machine Learning in Health Care","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.07276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Applications of machine learning in healthcare often require working with time-to-event prediction tasks including prognostication of an adverse event, re-hospitalization or death. Such outcomes are typically subject to censoring due to loss of follow up. Standard machine learning methods cannot be applied in a straightforward manner to datasets with censored outcomes. In this paper, we present auton-survival, an open-source repository of tools to streamline working with censored time-to-event or survival data. auton-survival includes tools for survival regression, adjustment in the presence of domain shift, counterfactual estimation, phenotyping for risk stratification, evaluation, as well as estimation of treatment effects. Through real world case studies employing a large subset of the SEER oncology incidence data, we demonstrate the ability of auton-survival to rapidly support data scientists in answering complex health and epidemiological questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自我生存:一个开源软件包,用于回归,反事实估计,评估和表型与审查时间到事件的数据
机器学习在医疗保健中的应用通常需要处理事件时间预测任务,包括不良事件、再次住院或死亡的预测。由于缺乏随访,这些结果通常会受到审查。标准的机器学习方法不能以一种直接的方式应用于具有审查结果的数据集。在本文中,我们提出了自动生存,这是一个开源的工具存储库,用于简化处理审查的时间到事件或生存数据。自我生存包括生存回归、领域转移时的调整、反事实估计、风险分层的表型、评估以及治疗效果估计等工具。通过使用大量SEER肿瘤发病率数据的现实世界案例研究,我们展示了自主生存的能力,可以快速支持数据科学家回答复杂的健康和流行病学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latent Temporal Flows for Multivariate Analysis of Wearables Data Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis Development and Validation of ML-DQA - a Machine Learning Data Quality Assurance Framework for Healthcare HiCu: Leveraging Hierarchy for Curriculum Learning in Automated ICD Coding Weakly Supervised Deep Instance Nuclei Detection using Points Annotation in 3D Cardiovascular Immunofluorescent Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1