Xinjian Lu, Yinghui Guo, M. Pu, Xiong Li, Xiaoliang Ma, Ping Gao, Xiangang Luo
{"title":"Broadband high-efficiency reflective metasurfaces for sub-diffraction focusing in the visible","authors":"Xinjian Lu, Yinghui Guo, M. Pu, Xiong Li, Xiaoliang Ma, Ping Gao, Xiangang Luo","doi":"10.1117/12.2604462","DOIUrl":null,"url":null,"abstract":"Super-oscillation phenomenon provides an effective solution for realizing far-field non-invasive super-resolution imaging. However, most super-oscillatory lenses are challenging to balance the working bandwidth and working efficiency, which greatly limits the practical applications of super-oscillation lenses in optical systems. In this work, a broadband high-efficiency super-oscillatory metalens for sub-diffraction focusing about 0.75 times the diffraction limit based on the reflective metasurface is proposed for super-resolution imaging in the visible ranging from 400 nm to 700 nm. Moreover, another metalens with a sub-diffraction focusing spot equal to 0.6 times of the diffraction limit is also designed to prove the universal applicability of the proposed method. The proposed method provides an effective pathway for the development of microscopy, holography, and machine vision.","PeriodicalId":236529,"journal":{"name":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Super-oscillation phenomenon provides an effective solution for realizing far-field non-invasive super-resolution imaging. However, most super-oscillatory lenses are challenging to balance the working bandwidth and working efficiency, which greatly limits the practical applications of super-oscillation lenses in optical systems. In this work, a broadband high-efficiency super-oscillatory metalens for sub-diffraction focusing about 0.75 times the diffraction limit based on the reflective metasurface is proposed for super-resolution imaging in the visible ranging from 400 nm to 700 nm. Moreover, another metalens with a sub-diffraction focusing spot equal to 0.6 times of the diffraction limit is also designed to prove the universal applicability of the proposed method. The proposed method provides an effective pathway for the development of microscopy, holography, and machine vision.