A Multi-Sensor Approach to Separate Palm Oil Plantations from Forest Cover Using NDFI and a Modified Pauli Decomposition Technique

E. Muñoz, A. Zozaya, E. Lindquist
{"title":"A Multi-Sensor Approach to Separate Palm Oil Plantations from Forest Cover Using NDFI and a Modified Pauli Decomposition Technique","authors":"E. Muñoz, A. Zozaya, E. Lindquist","doi":"10.1109/IGARSS39084.2020.9324567","DOIUrl":null,"url":null,"abstract":"In this work, a multi-sensor approach to separate oil palm plantations from forest cover using NDFI and a modified Pauli Decomposition technique is presented. The main contribution of this research is the potential to reduce misclassification of both classes, in the context of automated-base supervised classification algorithms, to decrease uncertainties derived through the detection and mapping process of forest cover. The hereby proposed method includes the generation of a primary forest map cover defining thresholds from a high resolution multi -spectral satellite image, and then the palm oil plantation will be filtered out from this classification using scattering mechanisms by a Pauli Decomposition approach. Preliminary results shown the capabilities of this approach in order to generate complementary information to separate the oil palm plantations from the forest cover classification.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, a multi-sensor approach to separate oil palm plantations from forest cover using NDFI and a modified Pauli Decomposition technique is presented. The main contribution of this research is the potential to reduce misclassification of both classes, in the context of automated-base supervised classification algorithms, to decrease uncertainties derived through the detection and mapping process of forest cover. The hereby proposed method includes the generation of a primary forest map cover defining thresholds from a high resolution multi -spectral satellite image, and then the palm oil plantation will be filtered out from this classification using scattering mechanisms by a Pauli Decomposition approach. Preliminary results shown the capabilities of this approach in order to generate complementary information to separate the oil palm plantations from the forest cover classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于NDFI和改进泡利分解技术的多传感器棕榈油种植园与森林覆盖分离方法
在这项工作中,提出了一种使用NDFI和改进的泡利分解技术的多传感器方法来分离油棕种植园和森林覆盖。本研究的主要贡献在于,在自动化监督分类算法的背景下,有可能减少这两类的误分类,减少森林覆盖检测和制图过程中产生的不确定性。本文提出的方法包括从高分辨率多光谱卫星图像中生成定义阈值的原始森林地图覆盖,然后通过泡利分解方法利用散射机制从该分类中过滤出棕榈油种植园。初步结果表明,该方法能够生成补充信息,将油棕种植园与森林覆盖分类分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1