An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm

Vallepu Rambabu, K. Malathi, R. Mahaveerakannan
{"title":"An Innovative Method to Predict the Accuracy of Phishing Websites by Comparing Logistic Regression Algorithm with Support Vector Machine Algorithm","authors":"Vallepu Rambabu, K. Malathi, R. Mahaveerakannan","doi":"10.1109/ICECA55336.2022.10009351","DOIUrl":null,"url":null,"abstract":"To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To compare novel LR with the SVM technique to estimate the precision of phishing websites. Materials and Methods: The SVM method's algorithm for supervised learning (N = 20) is compared to the Logistic Regression algorithm's supervised learning algorithm (N = 20). To achieve great precision, the G power value is set to 0.8. Machine Learning is used in the framework. Compared to the SVM approach, LR has more precision (92.00%). (90.26%). With a confidence value of 95%, the impartial T-Test was run (p =.375), indicating the importance score that is statistically insignificant (p>0.05). Conclusion: The LR approach appeared to detect phishing websites with greater accuracy than the SVM technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Logistic回归算法和支持向量机算法的钓鱼网站准确率预测方法
比较新型LR和支持向量机技术对钓鱼网站的精度估计。材料与方法:将SVM方法的监督学习算法(N = 20)与Logistic回归算法的监督学习算法(N = 20)进行比较。为了达到较高的精度,G功率值设置为0.8。框架中使用了机器学习。与SVM方法相比,LR具有更高的精度(92.00%)。(90.26%)。置信值为95%,进行公正的t检验(p =.375),表明重要性得分无统计学意义(p>0.05)。结论:LR方法似乎比支持向量机技术更准确地检测钓鱼网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1