Chiara Alzetta, Alessio Miaschi, F. Dell’Orletta, Frosina Koceva, Ilaria Torre
{"title":"PRELEARN @ EVALITA 2020: Overview of the Prerequisite Relation Learning Task for Italian","authors":"Chiara Alzetta, Alessio Miaschi, F. Dell’Orletta, Frosina Koceva, Ilaria Torre","doi":"10.4000/BOOKS.AACCADEMIA.7518","DOIUrl":null,"url":null,"abstract":"The Prerequisite Relation Learning (PRELEARN) task is the EVALITA 2020 shared task on concept prerequisite learning, which consists of classifying prerequisite relations between pairs of concepts distinguishing between prerequisite pairs and non-prerequisite pairs. Four sub-tasks were defined: two of them define different types of features that participants are allowed to use when training their model, while the other two define the classification scenarios where the proposed models would be tested. In total, 14 runs were submitted by 3 teams comprising 9 total individual participants.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The Prerequisite Relation Learning (PRELEARN) task is the EVALITA 2020 shared task on concept prerequisite learning, which consists of classifying prerequisite relations between pairs of concepts distinguishing between prerequisite pairs and non-prerequisite pairs. Four sub-tasks were defined: two of them define different types of features that participants are allowed to use when training their model, while the other two define the classification scenarios where the proposed models would be tested. In total, 14 runs were submitted by 3 teams comprising 9 total individual participants.