How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images?

E. Souza, Ademir Marques, Rafael Kenji Horota, L. S. Kupssinskü, Pedro Rossa, A. S. Aires, L. G. D. Silveira, M. Veronez, C. Cazarin
{"title":"How Much Wavelet Decomposition can Improve the Detection of Surface Fractures in Remote Sensing Images?","authors":"E. Souza, Ademir Marques, Rafael Kenji Horota, L. S. Kupssinskü, Pedro Rossa, A. S. Aires, L. G. D. Silveira, M. Veronez, C. Cazarin","doi":"10.1109/IGARSS39084.2020.9324506","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT).","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"2441 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose a new approach to automatically detect and extract fractures as well as estimate the aperture measures from orbital/aerial images. We show, in a first step, the capability of a translation invariant wavelet multiscale decomposition (NDWT) to separate the information related to the fractures from other features in the image. In the second stage, the aperture size (widths of the fractures) in different positions are estimated across scales using curvature analysis. In a third step, the fractures can be automatically extracted using a growing algorithm. Besides the measures of the fracture apertures in an image of Thingvellir in Iceland, we showed the correlation between the fractures of interest extracted automatically and the respective extracted manually were high (0.9) while only 51 % of then were extracted using just curvature analysis and growing algorithm (without NDWT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小波分解能在多大程度上改善遥感图像表面裂缝的检测?
本文提出了一种从轨道/航空图像中自动检测和提取裂缝以及估计裂缝孔径的新方法。在第一步中,我们展示了平移不变小波多尺度分解(NDWT)从图像中的其他特征中分离与裂缝相关信息的能力。在第二阶段,利用曲率分析跨尺度估计不同位置裂缝的孔径大小(裂缝宽度)。第三步,使用生长算法自动提取裂缝。除了冰岛Thingvellir的裂缝孔径测量外,我们还发现自动提取的裂缝与人工提取的裂缝之间的相关性很高(0.9),而仅使用曲率分析和生长算法(没有NDWT)提取的裂缝仅占51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1