Emoticon-Aware Recurrent Neural Network Model for Chinese Sentiment Analysis

Da Li, Rafal Rzepka, M. Ptaszynski, K. Araki
{"title":"Emoticon-Aware Recurrent Neural Network Model for Chinese Sentiment Analysis","authors":"Da Li, Rafal Rzepka, M. Ptaszynski, K. Araki","doi":"10.1109/ICAWST.2018.8517232","DOIUrl":null,"url":null,"abstract":"Pictograms (emoticons/emojis) have been widely used in social media as a mean for graphical expression of emotions. People can express delicate nuances through textual information when supported with emoticons, and the effectiveness of computer-mediated communication (CMC) is also improved. Therefore it is important to fully understand the influence of emoticons on CMC. In this paper, we propose an emoticon polarity-aware recurrent neural network method for sentiment analysis of Weibo, a Chinese social media platform. In the first step, we analyzed the usage of 67 emoticons with racial expression used on Weibo. By performing a polarity annotation with a new “humorous type” added, we have confirmed that 23 emoticons can be considered more as humorous than positive or negative. On this basis, we applied the emoticons polarity in a Long Short-Term Memory recurrent neural network (LSTM) for sentiment analysis of undersized labelled data. Our experimental results show that the proposed method can significantly improve the precision for predicting sentiment polarity on Weibo.","PeriodicalId":277939,"journal":{"name":"2018 9th International Conference on Awareness Science and Technology (iCAST)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2018.8517232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Pictograms (emoticons/emojis) have been widely used in social media as a mean for graphical expression of emotions. People can express delicate nuances through textual information when supported with emoticons, and the effectiveness of computer-mediated communication (CMC) is also improved. Therefore it is important to fully understand the influence of emoticons on CMC. In this paper, we propose an emoticon polarity-aware recurrent neural network method for sentiment analysis of Weibo, a Chinese social media platform. In the first step, we analyzed the usage of 67 emoticons with racial expression used on Weibo. By performing a polarity annotation with a new “humorous type” added, we have confirmed that 23 emoticons can be considered more as humorous than positive or negative. On this basis, we applied the emoticons polarity in a Long Short-Term Memory recurrent neural network (LSTM) for sentiment analysis of undersized labelled data. Our experimental results show that the proposed method can significantly improve the precision for predicting sentiment polarity on Weibo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向表情符号的汉语情感分析递归神经网络模型
作为一种图形化的情感表达方式,象形图(emoticon /emojis)在社交媒体中被广泛使用。在表情符号的支持下,人们可以通过文本信息表达微妙的细微差别,提高了计算机中介通信(CMC)的有效性。因此,充分了解表情符号对CMC的影响是非常重要的。在本文中,我们提出了一种用于中国社交媒体平台微博情感分析的表情符号极性感知递归神经网络方法。第一步,我们分析了微博上67个带有种族表情的表情符号的使用情况。通过添加新的“幽默类型”的极性注释,我们确认了23个表情符号可以被认为是幽默的,而不是积极或消极的。在此基础上,我们将表情符号极性应用于长短期记忆递归神经网络(LSTM)中,对尺寸不足的标记数据进行情感分析。实验结果表明,该方法可以显著提高微博情感极性预测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Assistance for Drug Dispensing Using LED Notification and IR Sensor-based Monitoring Methods Exploring a Topical Representation of Documents for Recommendation Systems Why Tourists Don’t Visit Again? Pre-accident Situation Analysis Based on Locally of Motion Estimation of Influence of Each Variable on User’s Evaluation in Interactive Evolutionary Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1