An Enumerative Biclustering Algorithm for DNA Microarray Data

Haifa Ben Saber, M. Elloumi
{"title":"An Enumerative Biclustering Algorithm for DNA Microarray Data","authors":"Haifa Ben Saber, M. Elloumi","doi":"10.1109/ICDMW.2015.168","DOIUrl":null,"url":null,"abstract":"In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative Lattice (EnumLat) for biclustering of binary microarray data. EnumLat is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevant biclusters.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative Lattice (EnumLat) for biclustering of binary microarray data. EnumLat is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA microarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevant biclusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA微阵列数据的枚举双聚类算法
在许多领域,如DNA微阵列数据分析中,我们需要同时对数据矩阵的行(基因)和列(条件)进行聚类,以识别具有一组列的恒定行组。这种聚类称为双聚类。双聚类算法广泛应用于DNA微阵列数据分析。更有效的双聚类算法是非常可取和需要的。本文介绍了一种用于二进制微阵列数据双聚类的新算法——枚举点阵(EnumLat)。EnumLat是一种采用双聚类枚举方法的算法。该算法提取出质量一致的所有双聚类。EnumLat的主要思想是构建一个新的树结构来充分表示枚举过程中发现的不同的双聚类。该算法采用一次处理所有双聚类的策略。使用合成和真实DNA微阵列数据对所提出算法的性能进行了评估,我们的算法优于其他二进制微阵列数据的双聚类算法。此外,我们使用基因注释网络工具测试了生物学意义,表明我们提出的方法能够产生生物学相关的双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1