Natural Language Query in Bengali to SQL Generation Using Named Entity Recognition

K. Mandal, Prasenjit Mukheriee, Baisakhi Chakraborty
{"title":"Natural Language Query in Bengali to SQL Generation Using Named Entity Recognition","authors":"K. Mandal, Prasenjit Mukheriee, Baisakhi Chakraborty","doi":"10.1109/IATMSI56455.2022.10119243","DOIUrl":null,"url":null,"abstract":"Various search strategies are used to search the data from the database. Adapting the searching language and grasping its numerous syntaxes are the key hurdles that a user encounters when accessing these data. Thus, we propose a system that translates natural language queries into Structured Query Language (SQL) queries and retrieves the relevant data from a database. This proposed system allows inexperienced users to access a database without prior knowledge of query languages. The current approach applies machine learning and rule-based approaches because the machine learning approach gives better results for large-size data, whereas the rule-based approach performs well in small-size datasets. This system receives health queries in Bengali. Tokenization is applied to the user's query. The Bengali Natural Language Processing (BNLP) toolkit removes punctuation marks from the token list. After removing punctuation marks, the proposed system uses a predefined Bengali stop words list to provide a score for each token. The score facilitates the finding of nominal words. The stemming method is performed to obtain the nominal root word. The pattern is created to generate all possible nominal compounds in Bengali. A new set of proposed rules and named entity recognition module of the BNLP toolkit is utilized to predict entities and attributes using the pattern. The proposed system maintains a healthcare database. Finally, the SQL is formed using entities, and attributes and the relevant result is obtained from the database.","PeriodicalId":221211,"journal":{"name":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IATMSI56455.2022.10119243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various search strategies are used to search the data from the database. Adapting the searching language and grasping its numerous syntaxes are the key hurdles that a user encounters when accessing these data. Thus, we propose a system that translates natural language queries into Structured Query Language (SQL) queries and retrieves the relevant data from a database. This proposed system allows inexperienced users to access a database without prior knowledge of query languages. The current approach applies machine learning and rule-based approaches because the machine learning approach gives better results for large-size data, whereas the rule-based approach performs well in small-size datasets. This system receives health queries in Bengali. Tokenization is applied to the user's query. The Bengali Natural Language Processing (BNLP) toolkit removes punctuation marks from the token list. After removing punctuation marks, the proposed system uses a predefined Bengali stop words list to provide a score for each token. The score facilitates the finding of nominal words. The stemming method is performed to obtain the nominal root word. The pattern is created to generate all possible nominal compounds in Bengali. A new set of proposed rules and named entity recognition module of the BNLP toolkit is utilized to predict entities and attributes using the pattern. The proposed system maintains a healthcare database. Finally, the SQL is formed using entities, and attributes and the relevant result is obtained from the database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用命名实体识别的孟加拉语自然语言查询到SQL生成
使用各种搜索策略从数据库中搜索数据。适应搜索语言并掌握其众多语法是用户在访问这些数据时遇到的主要障碍。因此,我们提出了一个将自然语言查询转换为结构化查询语言(SQL)查询并从数据库检索相关数据的系统。这个系统允许没有经验的用户访问数据库,而不需要事先了解查询语言。目前的方法应用了机器学习和基于规则的方法,因为机器学习方法在大数据集上提供了更好的结果,而基于规则的方法在小数据集上表现良好。该系统接收孟加拉语的健康查询。标记化应用于用户的查询。孟加拉语自然语言处理(BNLP)工具包从标记列表中删除标点符号。删除标点符号后,建议的系统使用预定义的孟加拉语停止词列表为每个标记提供分数。分数有助于发现名义词。执行词干提取方法以获得名义词根。创建该模式是为了生成孟加拉语中所有可能的名词性复合词。利用BNLP工具包的一组新的建议规则和命名实体识别模块来使用该模式预测实体和属性。拟议的系统维护一个医疗保健数据库。最后利用实体生成SQL,从数据库中获取属性和相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware and Software Development of a Small Scale Driverless Vehicle A Study on The Impact of Road Traffic Congestion at Vadapalani-Chennai Agrobot- An IoT-Based Automated Multi-Functional Robot Additional Reviewers Subcarrier Selection and User Matching Technique for Downlink NOMA System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1