Adaptive recovery of a noisy chirp: performance of the SSLMS algorithm

M. Salman, M. Malik
{"title":"Adaptive recovery of a noisy chirp: performance of the SSLMS algorithm","authors":"M. Salman, M. Malik","doi":"10.1109/ISSPA.2005.1581050","DOIUrl":null,"url":null,"abstract":"This paper investigates the ability of state space least mean square (SSLMS) algorithm to track a chirped signal buried in additive white Gaussian noise. The signal is a sinusoid whose frequency is drifting at a constant rate. After incorporating second order linear time varying state space model of the chirped sinusoid, SSLMS exhibits superior tracking performance over standard LMS & RLS and their known variants. The step size parameter plays an important role in this context. For various values of step size parameter, time average auto-correlation function (ACF) of prediction error is evaluated when responding to chirped signal. Whiteness of prediction error verifies excellent tracking by SSLMS.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper investigates the ability of state space least mean square (SSLMS) algorithm to track a chirped signal buried in additive white Gaussian noise. The signal is a sinusoid whose frequency is drifting at a constant rate. After incorporating second order linear time varying state space model of the chirped sinusoid, SSLMS exhibits superior tracking performance over standard LMS & RLS and their known variants. The step size parameter plays an important role in this context. For various values of step size parameter, time average auto-correlation function (ACF) of prediction error is evaluated when responding to chirped signal. Whiteness of prediction error verifies excellent tracking by SSLMS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声啁啾的自适应恢复:SSLMS算法的性能
本文研究了状态空间最小均方(SSLMS)算法跟踪隐藏在加性高斯白噪声中的啁啾信号的能力。信号是正弦波,其频率以恒定速率漂移。在结合二阶线性时变啁啾正弦的状态空间模型后,SSLMS比标准LMS和RLS及其已知变体具有更好的跟踪性能。在这种情况下,步长参数起着重要作用。对于不同的步长参数值,在响应啁啾信号时评估预测误差的时间平均自相关函数(ACF)。预测误差的白度验证了SSLMS的良好跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban site path loss prediction for mobile communications employing stratospheric platforms Mask constrained beam pattern synthesis for large arrays Neural network approaches to nonlinear blind source separation On the design of equiripple multidimensional FIR digital filters Improved Huffman code tables for H.263/H.263+ based video compression applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1