Development a Data Validation Module to Satisfy the Retention Policy Metric

Aigul Ildarovna Sibgatullina, Azat Shavkatovich Yakupov
{"title":"Development a Data Validation Module to Satisfy the Retention Policy Metric","authors":"Aigul Ildarovna Sibgatullina, Azat Shavkatovich Yakupov","doi":"10.26907/1562-5419-2022-25-2-159-178","DOIUrl":null,"url":null,"abstract":"Every year the size of the global big data market is growing. Analysing these data is essential for good decision-making. Big data technologies lead to a significant cost reduction with use of cloud services, distributed file systems, when there is a need to store large amounts of information. The quality of data analytics is dependent on the quality of the data themselves. This is especially important if the data has a retention policy and migrates from one source to another, increasing the risk of a data loss. Prevention of negative consequences from data migration is achieved through the process of data reconciliation – a comprehensive verification of large amounts of information in order to confirm their consistency. \nThis article discusses probabilistic data structures that can be used to solve the problem, and suggests an implementation – data integrity verification module using a Counting Bloom filter. This module is integrated into Apache Airflow to automate its invocation.","PeriodicalId":262909,"journal":{"name":"Russian Digital Libraries Journal","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Digital Libraries Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/1562-5419-2022-25-2-159-178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Every year the size of the global big data market is growing. Analysing these data is essential for good decision-making. Big data technologies lead to a significant cost reduction with use of cloud services, distributed file systems, when there is a need to store large amounts of information. The quality of data analytics is dependent on the quality of the data themselves. This is especially important if the data has a retention policy and migrates from one source to another, increasing the risk of a data loss. Prevention of negative consequences from data migration is achieved through the process of data reconciliation – a comprehensive verification of large amounts of information in order to confirm their consistency. This article discusses probabilistic data structures that can be used to solve the problem, and suggests an implementation – data integrity verification module using a Counting Bloom filter. This module is integrated into Apache Airflow to automate its invocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发数据验证模块以满足保留策略度量
全球大数据市场的规模每年都在增长。分析这些数据对于做出正确的决策至关重要。当需要存储大量信息时,通过使用云服务和分布式文件系统,大数据技术可以显著降低成本。数据分析的质量取决于数据本身的质量。如果数据具有保留策略并从一个源迁移到另一个源,这会增加数据丢失的风险,这一点尤其重要。防止数据迁移带来的负面后果是通过数据协调过程实现的——对大量信息进行全面验证,以确认它们的一致性。本文讨论了可用于解决该问题的概率数据结构,并提出了一种使用计数布隆过滤器实现的数据完整性验证模块。该模块集成到Apache气流中以自动调用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How the Latest Release Date of Publication is Formed in Bibliographic Reference "On the Fly" Stages of the Difficult Way (On the Computerization of Economic Research) Digital Platform for Supercomputer Mathematical Modeling of Spraying Processes Organization of Calculations and Work with Memory in the Educational Programming Language SYNHRO Semantic Annotation of Mathematical Formulas in PDF-Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1