A parametric model for synthesis of cortical column patterns

A. Rojer, E. Schwartz
{"title":"A parametric model for synthesis of cortical column patterns","authors":"A. Rojer, E. Schwartz","doi":"10.1109/IJCNN.1989.118416","DOIUrl":null,"url":null,"abstract":"Summary form only given. The authors introduce a parametric model for columnar structure which considers the spatial form in an image-processing framework. This method permits easy synthesis of column-like structure from noise images. In particular, bandpass filtering of noise images followed by thresholding yields patterns which strongly resemble the columnar structure that has been observed in the brain. The image-oriented technique is flexible and inexpensive to compute. There are only a few independent parameters, and the role they play in column formation is apparent. The parameters for a particular column system can be readily determined from actual brain data by the use of standard image-processing techniques. The authors have used the model to process data obtained in their computer reconstruction of the pattern of ocular dominance columns in the macaque monkey. This approach avoids the necessity of constructing computationally expensive cellular models which are based on poorly understood details of neural development. The authors provide an efficient, accurate model which can be adjusted to fit a wide variety of column data.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Summary form only given. The authors introduce a parametric model for columnar structure which considers the spatial form in an image-processing framework. This method permits easy synthesis of column-like structure from noise images. In particular, bandpass filtering of noise images followed by thresholding yields patterns which strongly resemble the columnar structure that has been observed in the brain. The image-oriented technique is flexible and inexpensive to compute. There are only a few independent parameters, and the role they play in column formation is apparent. The parameters for a particular column system can be readily determined from actual brain data by the use of standard image-processing techniques. The authors have used the model to process data obtained in their computer reconstruction of the pattern of ocular dominance columns in the macaque monkey. This approach avoids the necessity of constructing computationally expensive cellular models which are based on poorly understood details of neural development. The authors provide an efficient, accurate model which can be adjusted to fit a wide variety of column data.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮质柱型综合的参数化模型
只提供摘要形式。在图像处理框架中考虑了柱状结构的空间形式,提出了柱状结构参数化模型。这种方法可以很容易地从噪声图像中合成柱状结构。特别是,噪声图像的带通滤波后的阈值产生的模式非常类似于在大脑中观察到的柱状结构。面向图像的技术灵活且计算成本低。只有几个独立参数,它们在柱状地层中所起的作用是显而易见的。通过使用标准的图像处理技术,可以很容易地从实际的大脑数据中确定特定色谱柱系统的参数。作者已经使用该模型来处理他们在猕猴眼优势柱模式的计算机重建中获得的数据。这种方法避免了构建基于对神经发育细节知之甚少的计算昂贵的细胞模型的必要性。作者提供了一个高效,准确的模型,可以调整以适应各种列数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid distributed/local connectionist architectures A new back-propagation algorithm with coupled neuron A novel objective function for improved phoneme recognition using time delay neural networks Optimization of a digital neuron design Multitarget tracking with an optical neural net using a quadratic energy function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1