State of Charge Estimation of Lithium Sulfur Batteries using Sliding Mode Observer

Srinivasan Munisamy, Wenxuan Wu
{"title":"State of Charge Estimation of Lithium Sulfur Batteries using Sliding Mode Observer","authors":"Srinivasan Munisamy, Wenxuan Wu","doi":"10.1109/energycon53164.2022.9830474","DOIUrl":null,"url":null,"abstract":"The lithium-sulfur (Li-S) batteries are high energy storage systems that can be used for electric grid and solar power air vehicle applications. Such applications require an accurate state of charge (SOC) estimator to control and optimize battery performance. Modelling and estimation of discharging Li-S are highly challenging than other batteries as the discharge voltage of Li-S batteries has highly nonlinear and typical characteristics than the Lithium-Ion batteries. For Li-S battery SOC estimation, literature has proposed filters and machine learning techniques, but no literature on sliding mode observer (SMO). This paper presents the SMO for discharging Li-S SOC estimation and compares it to the extended Kalman filter (EKF). Both estimators use a first-order equivalent circuit network (ECN) model of Li-S cell parameters given in the literature. The performance of such ECN model based SOC estimators influenced by the Q- uncertainty, which is a perturbation in the form of process noise state-space model. Therefore, this work studies an optimal trade-off characteristic of SMO and EKF over the Q-uncertainty. With constant and mixed-amplitude pulse load current sequences, numerical simulation has performed. Simulation results illustrate that the SMO is optimal, converges to the true SOC than the EKF when the perturbation increased.","PeriodicalId":106388,"journal":{"name":"2022 IEEE 7th International Energy Conference (ENERGYCON)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 7th International Energy Conference (ENERGYCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/energycon53164.2022.9830474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The lithium-sulfur (Li-S) batteries are high energy storage systems that can be used for electric grid and solar power air vehicle applications. Such applications require an accurate state of charge (SOC) estimator to control and optimize battery performance. Modelling and estimation of discharging Li-S are highly challenging than other batteries as the discharge voltage of Li-S batteries has highly nonlinear and typical characteristics than the Lithium-Ion batteries. For Li-S battery SOC estimation, literature has proposed filters and machine learning techniques, but no literature on sliding mode observer (SMO). This paper presents the SMO for discharging Li-S SOC estimation and compares it to the extended Kalman filter (EKF). Both estimators use a first-order equivalent circuit network (ECN) model of Li-S cell parameters given in the literature. The performance of such ECN model based SOC estimators influenced by the Q- uncertainty, which is a perturbation in the form of process noise state-space model. Therefore, this work studies an optimal trade-off characteristic of SMO and EKF over the Q-uncertainty. With constant and mixed-amplitude pulse load current sequences, numerical simulation has performed. Simulation results illustrate that the SMO is optimal, converges to the true SOC than the EKF when the perturbation increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑模观测器的锂硫电池充电状态估计
锂硫(Li-S)电池是一种高能量存储系统,可用于电网和太阳能飞行器。此类应用需要精确的充电状态(SOC)估计器来控制和优化电池性能。与其他电池相比,锂离子电池的放电电压具有高度非线性和典型的特性,因此锂离子电池的放电建模和估计具有很高的挑战性。对于锂电池SOC估计,文献已经提出了滤波器和机器学习技术,但没有关于滑模观测器(SMO)的文献。本文提出了用于放电锂电池荷电状态估计的SMO算法,并将其与扩展卡尔曼滤波(EKF)进行了比较。两种估计器都使用文献中给出的锂电池参数的一阶等效电路网络(ECN)模型。基于ECN模型的SOC估计器的性能受到过程噪声状态空间模型扰动Q-不确定性的影响。因此,本文研究了SMO和EKF在q -不确定性上的最优权衡特性。对恒幅和混幅脉冲负载电流序列进行了数值模拟。仿真结果表明,当扰动增大时,SMO比EKF收敛于真实SOC,是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Monitoring System for PV plants using Open Technologies Fast charging for electric vehicles station integration with renewable energy sources Multi-objective Combined Heuristic-SPSO for Power Loss and Congestion Mitigation in Distribution Networks Long-term Energy and Fuel Consumption Forecast in Private and Commercial Transport using Artificial Life Approach Enhanced Control of the Interchange Power Flows in the Interconnected Energy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1