Adaptive estimation of inlier and outlier threshold

Jae-Y. Lee, Wonpil Yu
{"title":"Adaptive estimation of inlier and outlier threshold","authors":"Jae-Y. Lee, Wonpil Yu","doi":"10.1109/URAI.2013.6677398","DOIUrl":null,"url":null,"abstract":"One of the main problems relating RANSAC estimation is to determine the inlier threshold adaptively depending on the variance of inliers. In this paper, we propose a novel method that estimates the inlier threshold adaptively from the observations, giving a threshold-free RANSAC. A minimum assumption of our method is that the lower bound of inlier ratio is known in advance and the variance of inliers follows Gaussian. We also describe a simple motion flow tracker as an application of the proposed method. In the experiment we show the effectiveness of the proposed method by comparing tracking performance with and without adaptive estimation of inlier threshold.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main problems relating RANSAC estimation is to determine the inlier threshold adaptively depending on the variance of inliers. In this paper, we propose a novel method that estimates the inlier threshold adaptively from the observations, giving a threshold-free RANSAC. A minimum assumption of our method is that the lower bound of inlier ratio is known in advance and the variance of inliers follows Gaussian. We also describe a simple motion flow tracker as an application of the proposed method. In the experiment we show the effectiveness of the proposed method by comparing tracking performance with and without adaptive estimation of inlier threshold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内、离群阈值的自适应估计
RANSAC估计的主要问题之一是如何根据内嵌线的方差自适应地确定内嵌线阈值。在本文中,我们提出了一种从观测值中自适应估计内阈值的新方法,给出了一种无阈值RANSAC。该方法的最小假设是预先知道内嵌比的下界,内嵌比的方差服从高斯分布。我们还描述了一个简单的运动流跟踪器作为该方法的应用。在实验中,我们通过比较使用和不使用阈值自适应估计的跟踪性能来证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leader-follower formation control using infrared camera with reflective tag Optimal mission planning for underwater environment Mobile robot localization using indistinguishable artificial landmarks A study of collision avoidance between service robot and human at corner — Analysis of human behavior at corner Concept of variable transmission for tendon driven mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1