Robust Multi-Agent Bandits Over Undirected Graphs

Daniel Vial, S. Shakkottai, R. Srikant
{"title":"Robust Multi-Agent Bandits Over Undirected Graphs","authors":"Daniel Vial, S. Shakkottai, R. Srikant","doi":"10.48550/arXiv.2203.00076","DOIUrl":null,"url":null,"abstract":"We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur O((m + K/n) łog (T) / Δ ) regret in this setting, where K is the number of arms and Δ is the arm gap. For m łl K, this improves over the single-agent baseline regret of O(Kłog(T)/Δ). In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in K and n. In light of this negative result, we propose a new algorithm for which the i-th agent has regret O(( dmal (i) + K/n) łog(T)/Δ) on any connected and undirected graph, where dmal(i) is the number of i's neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where dmal(i) = m), and show the effect of malicious agents is entirely local (in the sense that only the dmal (i) malicious agents directly connected to i affect its long-term regret).","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete graph, existing algorithms incur O((m + K/n) łog (T) / Δ ) regret in this setting, where K is the number of arms and Δ is the arm gap. For m łl K, this improves over the single-agent baseline regret of O(Kłog(T)/Δ). In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly) linear regret until time is doubly exponential in K and n. In light of this negative result, we propose a new algorithm for which the i-th agent has regret O(( dmal (i) + K/n) łog(T)/Δ) on any connected and undirected graph, where dmal(i) is the number of i's neighbors who are malicious. Thus, we generalize existing regret bounds beyond the complete graph (where dmal(i) = m), and show the effect of malicious agents is entirely local (in the sense that only the dmal (i) malicious agents directly connected to i affect its long-term regret).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无向图上的鲁棒多智能体强盗
我们考虑一个多智能体多臂强盗设置,其中n个诚实的智能体在网络上合作以最小化遗憾,但m个恶意的智能体可以任意破坏学习。假设网络是完全图,在这种设置下,现有算法会产生O((m + K/n) łog (T) / Δ)的遗憾,其中K为臂的数量,Δ为臂的间隙。对于m łl K,这比单代理基线后悔0 (Kłog(T)/Δ)有所改善。在这项工作中,我们展示了在完全图的情况下,情况更加模糊。特别是,我们证明,如果在无向线图上使用最先进的算法,诚实的代理可能会遭受(几乎)线性遗憾,直到时间在K和n上是双指数。鉴于这个负面结果,我们提出了一种新的算法,其中第i个代理在任何连接和无向图上都有遗憾O((dmal(i) + K/n) łog(T)/Δ),其中dmal(i)是i的邻居是恶意的数量。因此,我们将现有的遗憾边界推广到完全图(其中dmal(i) = m)之外,并表明恶意代理的影响完全是局部的(从某种意义上说,只有dmal(i)直接连接到i的恶意代理影响其长期遗憾)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
A Large Scale Study and Classification of VirusTotal Reports on Phishing and Malware URLs POMACS V7, N2, June 2023 Editorial SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving Smash: Flexible, Fast, and Resource-efficient Placement and Lookup of Distributed Storage Towards Accelerating Data Intensive Application's Shuffle Process Using SmartNICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1