M. Gao, Zuochang Ye, Dajie Zeng, Yan Wang, Zhiping Yu
{"title":"Robust spatial correlation extraction with limited sample via L1-norm penalty","authors":"M. Gao, Zuochang Ye, Dajie Zeng, Yan Wang, Zhiping Yu","doi":"10.1109/ASPDAC.2011.5722273","DOIUrl":null,"url":null,"abstract":"Random process variations are often composed of location dependent part and distance dependent correlated part. While an accurate extraction of process variation is a prerequisite of both process improvement and circuit performance prediction, it is not an easy task to characterize such complicated spatial random process from a limited number of silicon data. For this purpose, kriging model was introduced to silicon society. This work forms a modified kriging model with L1-norm penalty which offers improved robustness. With the help of Least Angle Regression (LAR) in solving a core optimization sub-problem, this model can be characterized efficiently. Some promising results are presented with numerical experiments where a 3X improvement in model accuracy is shown.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Random process variations are often composed of location dependent part and distance dependent correlated part. While an accurate extraction of process variation is a prerequisite of both process improvement and circuit performance prediction, it is not an easy task to characterize such complicated spatial random process from a limited number of silicon data. For this purpose, kriging model was introduced to silicon society. This work forms a modified kriging model with L1-norm penalty which offers improved robustness. With the help of Least Angle Regression (LAR) in solving a core optimization sub-problem, this model can be characterized efficiently. Some promising results are presented with numerical experiments where a 3X improvement in model accuracy is shown.