Shift estimation method based fringe pattern profilometry and performance comparison

Yingsong Hu, J. Xi, E. Li, J. Chicharo, Zongkai Yang
{"title":"Shift estimation method based fringe pattern profilometry and performance comparison","authors":"Yingsong Hu, J. Xi, E. Li, J. Chicharo, Zongkai Yang","doi":"10.1109/ISSPA.2005.1581075","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present and study two approaches to fringe pattern profilometry (FPP) technique. Based ongeneralized analysis model for fringe pattern profilometry (FPP), Inverse Function based Shift Estimation(IFSE) and Gradient-based Shift Estimation (GSE) are proposed to calculate the shift between the projectedand deformed fringe patterns. Further, computer simulations are utilized to compare the performancebetween these two methods. Meanwhile, we also compare these two algorithms with Phase Shift profilometry(PSP). It can be seen that both of these two shift estimation algorithms can significantly improve themeasurement accuracy when the fringe patterns are nonlinearly distorted. Publication Details This article was originally published as: Hu, Y, Xi, J, Li, E, Chicharo, J & Yang, Z, Shift estimation methodbased fringe pattern profilometry and performance comparison, Proceedings of the Eighth InternationalSymposium on Signal Processing and Its Applications, 28-31 August 2005, 2, 863-866. Copyright IEEE 2005","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we present and study two approaches to fringe pattern profilometry (FPP) technique. Based ongeneralized analysis model for fringe pattern profilometry (FPP), Inverse Function based Shift Estimation(IFSE) and Gradient-based Shift Estimation (GSE) are proposed to calculate the shift between the projectedand deformed fringe patterns. Further, computer simulations are utilized to compare the performancebetween these two methods. Meanwhile, we also compare these two algorithms with Phase Shift profilometry(PSP). It can be seen that both of these two shift estimation algorithms can significantly improve themeasurement accuracy when the fringe patterns are nonlinearly distorted. Publication Details This article was originally published as: Hu, Y, Xi, J, Li, E, Chicharo, J & Yang, Z, Shift estimation methodbased fringe pattern profilometry and performance comparison, Proceedings of the Eighth InternationalSymposium on Signal Processing and Its Applications, 28-31 August 2005, 2, 863-866. Copyright IEEE 2005
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于条纹轮廓术的偏移估计方法及性能比较
摘要本文提出并研究了两种条纹图案轮廓测量(FPP)技术。在条纹轮廓广义分析模型(FPP)的基础上,提出了基于逆函数的位移估计(IFSE)和基于梯度的位移估计(GSE)来计算投影条纹和变形条纹之间的位移。此外,利用计算机模拟比较了这两种方法的性能。同时,我们还将这两种算法与相移轮廓术(PSP)进行了比较。可以看出,这两种移差估计算法都能显著提高条纹图非线性畸变时的测量精度。IEEE 2005版权所有
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban site path loss prediction for mobile communications employing stratospheric platforms Mask constrained beam pattern synthesis for large arrays Neural network approaches to nonlinear blind source separation On the design of equiripple multidimensional FIR digital filters Improved Huffman code tables for H.263/H.263+ based video compression applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1