Strategy for improving the reliability in the facial identification

C. Travieso, J. B. Alonso, Miguel A. Ferrer
{"title":"Strategy for improving the reliability in the facial identification","authors":"C. Travieso, J. B. Alonso, Miguel A. Ferrer","doi":"10.1109/CCST.2005.1594833","DOIUrl":null,"url":null,"abstract":"This paper presents a simple, robust and novel for errors detection in biometric system which is applied to the Olivetti Research Laboratory (ORL) face database (400 images). We have used as parameterisation different transformed dominions (Travieso et al., 2004; Faundez, 2003), and a support vector machine (SVM) (Burges, 1998; Cristianini and Shawe-Taylor, 2000) as classifier. This system has been adjusted with our experiments for obtaining a false identification rate (FIR) of 0%, with a success rate of 90.8% a rejected samples rate of 9.2%.","PeriodicalId":411051,"journal":{"name":"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2005.1594833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a simple, robust and novel for errors detection in biometric system which is applied to the Olivetti Research Laboratory (ORL) face database (400 images). We have used as parameterisation different transformed dominions (Travieso et al., 2004; Faundez, 2003), and a support vector machine (SVM) (Burges, 1998; Cristianini and Shawe-Taylor, 2000) as classifier. This system has been adjusted with our experiments for obtaining a false identification rate (FIR) of 0%, with a success rate of 90.8% a rejected samples rate of 9.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高人脸识别可靠性的策略
本文提出了一种简单、鲁棒、新颖的生物识别错误检测系统,并将其应用于Olivetti研究实验室(ORL)人脸数据库(400张图像)。我们使用不同的转换域作为参数化(Travieso et al., 2004;Faundez, 2003)和支持向量机(SVM) (Burges, 1998;Cristianini and Shawe-Taylor, 2000)作为分类器。通过实验对该系统进行了调整,获得了误识别率(FIR)为0%,成功率为90.8%,拒收率为9.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the effects of image quality degradation on minutiae- and ridge-based automatic fingerprint recognition Face recognition with small and large size databases Biometric verification of humans by means of hand geometry Security, Internet connectivity and aircraft data networks The X-ray object recognition test (X-ray ORT) - a reliable and valid instrument for measuring visual abilities needed in X-ray screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1