Meta-Learning for Recommending Metaheuristics for the MaxSAT Problem

Enrico S. Miranda, F. Fabris, Chrystian G. M. Nascimento, A. Freitas, A. Oliveira
{"title":"Meta-Learning for Recommending Metaheuristics for the MaxSAT Problem","authors":"Enrico S. Miranda, F. Fabris, Chrystian G. M. Nascimento, A. Freitas, A. Oliveira","doi":"10.1109/BRACIS.2018.00037","DOIUrl":null,"url":null,"abstract":"It is of great interest to build recommendation systems capable of choosing the best solver for a particular problem of a combinatorial optimisation task given past runs of solvers in various problems of that optimisation task. In this paper, a meta-learning approach is proposed to predict which metaheuristic is the best solver for MaxSAT problems. The proposal includes the creation of new meta-features derived from graph descriptions of MaxSAT problems and an interpretation of the meta-model. Our approach successfully selected the best metaheuristic to solve each problem in 87% of the cases. Also, the new meta-features have shown to be as good as the state-of-the-art meta-features, and the meta-model interpretation found interesting problem-specific knowledge.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is of great interest to build recommendation systems capable of choosing the best solver for a particular problem of a combinatorial optimisation task given past runs of solvers in various problems of that optimisation task. In this paper, a meta-learning approach is proposed to predict which metaheuristic is the best solver for MaxSAT problems. The proposal includes the creation of new meta-features derived from graph descriptions of MaxSAT problems and an interpretation of the meta-model. Our approach successfully selected the best metaheuristic to solve each problem in 87% of the cases. Also, the new meta-features have shown to be as good as the state-of-the-art meta-features, and the meta-model interpretation found interesting problem-specific knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为MaxSAT问题推荐元启发式的元学习
构建能够为组合优化任务的特定问题选择最佳求解器的推荐系统是非常有趣的,因为该优化任务的各种问题都有过去的求解器运行。本文提出了一种元学习方法来预测哪种元启发式算法是MaxSAT问题的最佳解算器。该提案包括从MaxSAT问题的图形描述中创建新的元特征,以及对元模型的解释。我们的方法在87%的情况下成功地选择了最佳的元启发式来解决每个问题。此外,新的元特征已经显示出与最先进的元特征一样好,并且元模型解释发现了有趣的特定于问题的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1