A kernel-based statistical analysis of the residual error in video coding

Santiago De-Luxán-Hernández, D. Marpe, K. Müller, T. Wiegand
{"title":"A kernel-based statistical analysis of the residual error in video coding","authors":"Santiago De-Luxán-Hernández, D. Marpe, K. Müller, T. Wiegand","doi":"10.1109/IWSSIP.2015.7314209","DOIUrl":null,"url":null,"abstract":"Video compression techniques exploit the statistical redundancy present in video signals to efficiently reduce the amount of information sent to the decoder. We contribute with a kernel-based analysis of the residual error blocks. In particular, we borrow dimension reduction techniques from machine learning, namely Principal Component Analysis (PCA) and nonlinear Kernel Principal Component Analysis (KPCA), to assess the spatial structure of block residuals. Interestingly, a nonlinear structure is observed that correlates to the rate-distortion costs of the blocks. Simulations by using a test set of videos with cropped Ultra High Definition (UHD) resolution show interesting results.","PeriodicalId":249021,"journal":{"name":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2015.7314209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Video compression techniques exploit the statistical redundancy present in video signals to efficiently reduce the amount of information sent to the decoder. We contribute with a kernel-based analysis of the residual error blocks. In particular, we borrow dimension reduction techniques from machine learning, namely Principal Component Analysis (PCA) and nonlinear Kernel Principal Component Analysis (KPCA), to assess the spatial structure of block residuals. Interestingly, a nonlinear structure is observed that correlates to the rate-distortion costs of the blocks. Simulations by using a test set of videos with cropped Ultra High Definition (UHD) resolution show interesting results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核函数的视频编码残差统计分析
视频压缩技术利用视频信号中存在的统计冗余来有效地减少发送到解码器的信息量。我们对残差块进行了基于核的分析。特别是,我们借用了机器学习中的降维技术,即主成分分析(PCA)和非线性核主成分分析(KPCA),来评估块残差的空间结构。有趣的是,我们观察到一个非线性结构,它与区块的速率扭曲成本有关。通过使用裁剪超高清(UHD)分辨率的视频测试集进行模拟,得出了有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
X-ray image analysis for cultural heritage investigations Improvement of speech emotion recognition with neural network classifier by using speech spectrogram Diphone spanish text-to-speech synthesizer Fast scale space image decomposition Applied machine learning classifiers for medical applications: Clarifying the behavioural patterns using a variety of datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1