{"title":"Active learning for rule-based and corpus-based Spoken Language Understanding models","authors":"Pierre Gotab, Frédéric Béchet, Géraldine Damnati","doi":"10.1109/ASRU.2009.5373377","DOIUrl":null,"url":null,"abstract":"Active learning can be used for the maintenance of a deployed Spoken Dialog System (SDS) that evolves with time and when large collection of dialog traces can be collected on a daily basis. At the Spoken Language Understanding (SLU) level this maintenance process is crucial as a deployed SDS evolves quickly when services are added, modified or dropped. Knowledge-based approaches, based on manually written grammars or inference rules, are often preferred as system designers can modify directly the SLU models in order to take into account such a modification in the service, even if no or very little related data has been collected. However as new examples are added to the annotated corpus, corpus-based methods can then be applied, replacing or in addition to the initial knowledge-based models. This paper describes an active learning scheme, based on an SLU criterion, which is used for automatically updating the SLU models of a deployed SDS. Two kind of SLU models are going to be compared: rule-based ones, used in the deployed system and consisting of several thousands of hand-crafted rules; corpus-based ones, based on the automatic learning of classifiers on an annotated corpus.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Active learning can be used for the maintenance of a deployed Spoken Dialog System (SDS) that evolves with time and when large collection of dialog traces can be collected on a daily basis. At the Spoken Language Understanding (SLU) level this maintenance process is crucial as a deployed SDS evolves quickly when services are added, modified or dropped. Knowledge-based approaches, based on manually written grammars or inference rules, are often preferred as system designers can modify directly the SLU models in order to take into account such a modification in the service, even if no or very little related data has been collected. However as new examples are added to the annotated corpus, corpus-based methods can then be applied, replacing or in addition to the initial knowledge-based models. This paper describes an active learning scheme, based on an SLU criterion, which is used for automatically updating the SLU models of a deployed SDS. Two kind of SLU models are going to be compared: rule-based ones, used in the deployed system and consisting of several thousands of hand-crafted rules; corpus-based ones, based on the automatic learning of classifiers on an annotated corpus.