Applying the Semisupervised Bayesian Approach to Classifier Design

Yiqing Kong, Shitong Wang
{"title":"Applying the Semisupervised Bayesian Approach to Classifier Design","authors":"Yiqing Kong, Shitong Wang","doi":"10.1109/ISDA.2006.106","DOIUrl":null,"url":null,"abstract":"This paper adopts a Bayesian approach to learn an optimal nonlinear classifier that is relevant to the classification task of semisupervised problems. The approach uses a prior weight to emphasize on the importance of class, which acts as a parameter of the likelihood function for both labeled and unlabeled data. We derive an expectation-maximization (EM) algorithm to compute maximum likelihood point estimate. Experimental results demonstrate appropriate classification accuracy on both synthetic and benchmark data sets","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper adopts a Bayesian approach to learn an optimal nonlinear classifier that is relevant to the classification task of semisupervised problems. The approach uses a prior weight to emphasize on the importance of class, which acts as a parameter of the likelihood function for both labeled and unlabeled data. We derive an expectation-maximization (EM) algorithm to compute maximum likelihood point estimate. Experimental results demonstrate appropriate classification accuracy on both synthetic and benchmark data sets
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半监督贝叶斯方法在分类器设计中的应用
本文采用贝叶斯方法学习与半监督问题分类任务相关的最优非线性分类器。该方法使用先验权重来强调类的重要性,它作为标记和未标记数据的似然函数的参数。我们推导了一种期望最大化算法来计算最大似然点估计。实验结果表明,无论是在合成数据集还是在基准数据集上,分类精度都是合适的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Lagrange Nonlinear Programming Neural Networks for Inequality Constraints Enhancement Filter for Computer-Aided Detection of Pulmonary Nodules on Thoracic CT images A View-Based Toeplitz-Matrix-Supported System for Word Recognition without Segmentation A Novel Spatial Clustering with Obstacles Constraints Based on Genetic Algorithms and K-Medoids An Intelligent Runoff Forecasting Method Based on Fuzzy sets, Neural network and Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1