Image retrieval based on saliency for urban image contents

Kamel Guissous, V. Gouet-Brunet
{"title":"Image retrieval based on saliency for urban image contents","authors":"Kamel Guissous, V. Gouet-Brunet","doi":"10.1109/IPTA.2017.8310131","DOIUrl":null,"url":null,"abstract":"With the increase of image datasets size and of descriptors complexity in Content-Based Image Retrieval (CBIR) and Computer Vision, it is essential to find a way to limit the amount of manipulated data, while keeping its quality. Instead of treating the entire image, the selection of regions which hold the essence of information is a relevant option to reach this goal. As the visual saliency aims at highlighting the areas of the image which are the most important for a given task, in this paper we propose to exploit visual saliency maps to prune the most salient image features. A novel visual saliency approach based on the local distribution analysis of the edges orientation, particularly dedicated to structured contents, such as street view images of urban environments, is proposed. It is evaluated for CBIR according to three criteria: quality of retrieval, volume of manipulated features and computation time. The proposal can be exploited into various applications involving large sets of local visual features; here it is experimented within two applications: cross-domain image retrieval and image-based vehicle localisation.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the increase of image datasets size and of descriptors complexity in Content-Based Image Retrieval (CBIR) and Computer Vision, it is essential to find a way to limit the amount of manipulated data, while keeping its quality. Instead of treating the entire image, the selection of regions which hold the essence of information is a relevant option to reach this goal. As the visual saliency aims at highlighting the areas of the image which are the most important for a given task, in this paper we propose to exploit visual saliency maps to prune the most salient image features. A novel visual saliency approach based on the local distribution analysis of the edges orientation, particularly dedicated to structured contents, such as street view images of urban environments, is proposed. It is evaluated for CBIR according to three criteria: quality of retrieval, volume of manipulated features and computation time. The proposal can be exploited into various applications involving large sets of local visual features; here it is experimented within two applications: cross-domain image retrieval and image-based vehicle localisation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于显著性的城市图像内容检索
在基于内容的图像检索(CBIR)和计算机视觉中,随着图像数据集规模和描述符复杂度的增加,如何在保证数据质量的前提下限制被操作数据的数量是一个非常重要的问题。而不是处理整个图像,选择具有信息本质的区域是实现这一目标的相关选项。由于视觉显着性旨在突出图像中对给定任务最重要的区域,因此在本文中,我们建议利用视觉显着性映射来修剪最显著的图像特征。提出了一种新的基于边缘方向局部分布分析的视觉显著性方法,特别适用于结构化内容,如城市环境街景图像。根据三个标准来评估CBIR:检索质量,操作特征量和计算时间。该方案可用于涉及大量局部视觉特征的各种应用;本文在两个应用中进行了实验:跨域图像检索和基于图像的车辆定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1