TEE-Perf: A Profiler for Trusted Execution Environments

Maurice Bailleu, Donald Dragoti, Pramod Bhatotia, C. Fetzer
{"title":"TEE-Perf: A Profiler for Trusted Execution Environments","authors":"Maurice Bailleu, Donald Dragoti, Pramod Bhatotia, C. Fetzer","doi":"10.1109/DSN.2019.00050","DOIUrl":null,"url":null,"abstract":"We introduce TEE-PERF, an architecture-and platform-independent performance measurement tool for trusted execution environments (TEEs). More specifically, TEE-PERF supports method-level profiling for unmodified multithreaded applications, without relying on any architecture-specific hardware features (e.g. Intel VTune Amplifier), or without requiring platform-dependent kernel features (e.g. Linux perf). Moreover, TEE-PERF provides accurate profiling measurements since it traces the entire process execution without employing instruction pointer sampling. Thus, TEE-PERF does not suffer from sampling frequency bias, which can occur with threads scheduled to align to the sampling frequency. We have implemented TEE-P ERF with an easy to use interface, and integrated it with Flame Graphs to visualize the performance bottlenecks. We have evaluated TEE-PERF based on the Phoenix multithreaded benchmark suite and real-world applications (RocksDB, SPDK, etc.), and compared it with Linux perf. Our experimental evaluation shows that TEE-PERF incurs low profiling overheads, while providing accurate profile measurements to identify and optimize the application bottlenecks in the context of TEEs. TEE-PERF is publicly available.","PeriodicalId":271955,"journal":{"name":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We introduce TEE-PERF, an architecture-and platform-independent performance measurement tool for trusted execution environments (TEEs). More specifically, TEE-PERF supports method-level profiling for unmodified multithreaded applications, without relying on any architecture-specific hardware features (e.g. Intel VTune Amplifier), or without requiring platform-dependent kernel features (e.g. Linux perf). Moreover, TEE-PERF provides accurate profiling measurements since it traces the entire process execution without employing instruction pointer sampling. Thus, TEE-PERF does not suffer from sampling frequency bias, which can occur with threads scheduled to align to the sampling frequency. We have implemented TEE-P ERF with an easy to use interface, and integrated it with Flame Graphs to visualize the performance bottlenecks. We have evaluated TEE-PERF based on the Phoenix multithreaded benchmark suite and real-world applications (RocksDB, SPDK, etc.), and compared it with Linux perf. Our experimental evaluation shows that TEE-PERF incurs low profiling overheads, while providing accurate profile measurements to identify and optimize the application bottlenecks in the context of TEEs. TEE-PERF is publicly available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEE-Perf:可信执行环境的分析器
我们介绍TEE-PERF,这是一种独立于架构和平台的性能测量工具,适用于可信执行环境(tee)。更具体地说,TEE-PERF支持未经修改的多线程应用程序的方法级分析,而不依赖于任何特定于体系结构的硬件特性(例如Intel VTune Amplifier),也不需要依赖于平台的内核特性(例如Linux perf)。此外,TEE-PERF提供了准确的分析测量,因为它跟踪整个进程的执行,而不使用指令指针采样。因此,TEE-PERF不会受到采样频率偏差的影响,而这种偏差可能发生在计划与采样频率对齐的线程中。我们已经实现了TEE-P ERF与一个易于使用的界面,并与火焰图形集成,以可视化的性能瓶颈。我们基于Phoenix多线程基准套件和实际应用程序(RocksDB, SPDK等)对TEE-PERF进行了评估,并将其与Linux perf进行了比较。我们的实验评估表明,TEE-PERF的分析开销很低,同时提供了准确的分析测量,以识别和优化tee环境中的应用瓶颈。TEE-PERF是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting Memory Corruption Vulnerabilities in Connman for IoT Devices Efficient Treatment of Uncertainty in System Reliability Analysis using Importance Measures Characterizing and Understanding HPC Job Failures Over The 2K-Day Life of IBM BlueGene/Q System PrivAnalyzer: Measuring the Efficacy of Linux Privilege Use POLaR: Per-Allocation Object Layout Randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1