Link Prediction in Signed Networks

Roshni Chakraborty, Ritwika Das, Nilotpal Chakraborty
{"title":"Link Prediction in Signed Networks","authors":"Roshni Chakraborty, Ritwika Das, Nilotpal Chakraborty","doi":"10.1145/3372923.3404805","DOIUrl":null,"url":null,"abstract":"Signed networks represent the real world relationships, which are both positive or negative. Recent research works focus on either discriminative or generative based models for signed network embedding. In this paper, we propose a generative adversarial network (GAN) model for signed network which unifies generative and discriminative models to generate the node embedding. Our experimental evaluations on several datasets, like Slashdot, Epinions, Reddit, Bitcoin and Wiki-RFA indicates that the proposed approach ensures better macro F1-score than the existing state-of-the-art approaches in link prediction and handling of sparsity of signed networks.","PeriodicalId":389616,"journal":{"name":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372923.3404805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Signed networks represent the real world relationships, which are both positive or negative. Recent research works focus on either discriminative or generative based models for signed network embedding. In this paper, we propose a generative adversarial network (GAN) model for signed network which unifies generative and discriminative models to generate the node embedding. Our experimental evaluations on several datasets, like Slashdot, Epinions, Reddit, Bitcoin and Wiki-RFA indicates that the proposed approach ensures better macro F1-score than the existing state-of-the-art approaches in link prediction and handling of sparsity of signed networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
签名网络中的链路预测
签名网络代表了现实世界的关系,有积极的也有消极的。最近的研究工作主要集中在基于判别模型和基于生成模型的签名网络嵌入。本文提出了一种用于签名网络的生成对抗网络(GAN)模型,该模型结合了生成模型和判别模型来生成节点嵌入。我们对几个数据集(如Slashdot, Epinions, Reddit,比特币和Wiki-RFA)的实验评估表明,所提出的方法在链接预测和签名网络稀疏性处理方面比现有的最先进方法确保更好的宏观f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Date the Artist: A Virtual Date with a Virtual Character 3rd Workshop on Human Factors in Hypertext (HUMAN'20) Noise-Enhanced Community Detection You Do Not Decide for Me! Evaluating Explainable Group Aggregation Strategies for Tourism Personalizing Information Exploration with an Open User Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1