Optimizing Sharpness Measure for Bright Lesion Detection in Retinal Image Analysis

Benson S. Y. Lam, Yongsheng Gao, Alan Wee-Chung Liew
{"title":"Optimizing Sharpness Measure for Bright Lesion Detection in Retinal Image Analysis","authors":"Benson S. Y. Lam, Yongsheng Gao, Alan Wee-Chung Liew","doi":"10.1109/DICTA.2009.14","DOIUrl":null,"url":null,"abstract":"Due to the spherical shape nature of retina and the illumination effect, detecting bright lesions in a retinal image is a challenging problem. Existing methods depend heavily on a prior knowledge about lesions, which either a user-defined parameter is employed or a supervised learning technique is adopted to estimate the parameter. In this paper, a novel sharpness measure is proposed, which indicates the degree of sharpness of bright lesions in the whole retinal image. It has a sudden jump at the optimal parameter. A polynomial fitting technique is used to capture this jump. We have tested our method on a public available dataset. Experimental results show that the proposed unsupervised approach is able to detect bright lesions accurately in an unhealthy retinal image and it outperforms existing supervised learning method. Also, the proposed method reports no abnormality for a healthy retinal image.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"475 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the spherical shape nature of retina and the illumination effect, detecting bright lesions in a retinal image is a challenging problem. Existing methods depend heavily on a prior knowledge about lesions, which either a user-defined parameter is employed or a supervised learning technique is adopted to estimate the parameter. In this paper, a novel sharpness measure is proposed, which indicates the degree of sharpness of bright lesions in the whole retinal image. It has a sudden jump at the optimal parameter. A polynomial fitting technique is used to capture this jump. We have tested our method on a public available dataset. Experimental results show that the proposed unsupervised approach is able to detect bright lesions accurately in an unhealthy retinal image and it outperforms existing supervised learning method. Also, the proposed method reports no abnormality for a healthy retinal image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视网膜图像分析中明亮病灶检测的锐度优化方法
由于视网膜的球形特性和光照效应,检测视网膜图像中的明亮病变是一个具有挑战性的问题。现有的方法严重依赖于病变的先验知识,要么使用用户自定义参数,要么采用监督学习技术来估计参数。本文提出了一种新的锐度度量方法,用来表示整个视网膜图像中明亮病灶的锐度。在最优参数处有一个突然的跳跃。使用多项式拟合技术来捕捉这种跳跃。我们已经在一个公开可用的数据集上测试了我们的方法。实验结果表明,所提出的无监督学习方法能够准确地检测出不健康视网膜图像中的明亮病变,优于现有的监督学习方法。此外,该方法报告健康视网膜图像没有异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1