An optimal reactive power dispatch (ORPD) for voltage security using particle swarm optimization (PSO) in graph theory

Diksha Kaur, T. Lie, N. Nair, B. Vallès
{"title":"An optimal reactive power dispatch (ORPD) for voltage security using particle swarm optimization (PSO) in graph theory","authors":"Diksha Kaur, T. Lie, N. Nair, B. Vallès","doi":"10.1109/ICSET.2016.7811751","DOIUrl":null,"url":null,"abstract":"The stochastic nature of the wind and the highly non linear transform from wind speed to electrical energy makes it more difficult to determine how to dispatch the power in order to guarantee both operational cost reduction and power system security. From a network constraint perspective for the economic dispatch problem one of the factors to be accounted for is voltage security, which impacts both active and/or reactive power dispatch. In this paper, an Optimal Reactive Power Dispatch based on Particle Swarm Optimization (PSO) using Graph Theory has been proposed to overcome the above-mentioned problem. Graph Theory has been used since it becomes very useful in cases of fault detection and isolation or to shed unbalanced nodes in case of excessive or insufficient supply. Simulation studies on the modified IEEE-14 Bus System have been conducted to show the effectiveness of the proposed method.","PeriodicalId":164446,"journal":{"name":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Sustainable Energy Technologies (ICSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSET.2016.7811751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The stochastic nature of the wind and the highly non linear transform from wind speed to electrical energy makes it more difficult to determine how to dispatch the power in order to guarantee both operational cost reduction and power system security. From a network constraint perspective for the economic dispatch problem one of the factors to be accounted for is voltage security, which impacts both active and/or reactive power dispatch. In this paper, an Optimal Reactive Power Dispatch based on Particle Swarm Optimization (PSO) using Graph Theory has been proposed to overcome the above-mentioned problem. Graph Theory has been used since it becomes very useful in cases of fault detection and isolation or to shed unbalanced nodes in case of excessive or insufficient supply. Simulation studies on the modified IEEE-14 Bus System have been conducted to show the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图论中的粒子群优化(PSO)实现电压安全的最优无功调度
由于风的随机性和风速对电能的高度非线性转换,使得如何调度以保证降低运行成本和电力系统安全变得更加困难。从电网约束的角度考虑经济调度问题,电压安全是影响有功和无功调度的因素之一。针对上述问题,本文提出了一种基于图论的粒子群优化无功调度方法。图论已经被使用,因为它在故障检测和隔离的情况下非常有用,或者在供应过多或不足的情况下摆脱不平衡节点。对改进后的IEEE-14总线系统进行了仿真研究,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LED lighting as energy management tool through correlation analysis of daily electricity demand and supply curve Toward building energy management: Electric analog modeling for thermal behavior simulation Using double Fed induction generator to enhance voltage stability and solving economic issue Modeling and analysis of an integrated AC-DC network under AC and DC faults Adaptive virtual impedance control scheme to eliminate reactive power sharing errors in islanded microgrid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1