Face detection using combinations of classifiers

Geovany A. Ramírez, O. Fuentes
{"title":"Face detection using combinations of classifiers","authors":"Geovany A. Ramírez, O. Fuentes","doi":"10.1109/CRV.2005.40","DOIUrl":null,"url":null,"abstract":"In this paper we present a two-stage face detection system. The first stage reduces the search space using two heuristics in cascade: 1) in a face image, the average intensity of the eyes is lower than the intensity of the part between the eyes, and 2) the histograms of the grayscale image of a face with uniform lighting have a distinguishable shape. In the second stage we use combinations of different classifiers including: naive Bayes (NB), support vector machine (SVM), voted perceptron (VP), C4.5 rule induction and feedforward artificial neural network (ANN); we also propose a simple lighting correction method. We use the BioID face dataset to test our system achieving up to a 95.13% of correct detections.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we present a two-stage face detection system. The first stage reduces the search space using two heuristics in cascade: 1) in a face image, the average intensity of the eyes is lower than the intensity of the part between the eyes, and 2) the histograms of the grayscale image of a face with uniform lighting have a distinguishable shape. In the second stage we use combinations of different classifiers including: naive Bayes (NB), support vector machine (SVM), voted perceptron (VP), C4.5 rule induction and feedforward artificial neural network (ANN); we also propose a simple lighting correction method. We use the BioID face dataset to test our system achieving up to a 95.13% of correct detections.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用分类器组合的人脸检测
本文提出了一种两阶段人脸检测系统。第一阶段采用级联的两种启发式方法减小搜索空间:1)在人脸图像中,眼睛的平均强度低于眼睛之间部分的强度;2)均匀光照下人脸灰度图像的直方图具有可区分的形状。在第二阶段,我们使用不同分类器的组合,包括:朴素贝叶斯(NB)、支持向量机(SVM)、投票感知器(VP)、C4.5规则归纳和前馈人工神经网络(ANN);我们还提出了一种简单的光照校正方法。我们使用BioID人脸数据集来测试我们的系统,达到95.13%的正确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1