Juno Kim, Matthew Moroz, Benjamin Arcioni, S. Palmisano
{"title":"Effects of head-display lag on presence in the oculus rift","authors":"Juno Kim, Matthew Moroz, Benjamin Arcioni, S. Palmisano","doi":"10.1145/3281505.3281607","DOIUrl":null,"url":null,"abstract":"We measured presence and perceived scene stability in a virtual environment viewed with different head-to-display lag (i.e., system lag) on the Oculus Rift (CV1). System lag was added on top of the measured benchmark system latency (22.3 ms) for our visual scene rendered in OpenGL Shading Language (GLSL). Participants made active head oscillations in pitch at 1.0Hz while viewing displays. We found that perceived scene instability increased and presence decreased when increasing system lag, which we attribute to the effect of multisensory visual-vestibular interactions on the interpretation of the visual information presented.","PeriodicalId":138249,"journal":{"name":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281505.3281607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We measured presence and perceived scene stability in a virtual environment viewed with different head-to-display lag (i.e., system lag) on the Oculus Rift (CV1). System lag was added on top of the measured benchmark system latency (22.3 ms) for our visual scene rendered in OpenGL Shading Language (GLSL). Participants made active head oscillations in pitch at 1.0Hz while viewing displays. We found that perceived scene instability increased and presence decreased when increasing system lag, which we attribute to the effect of multisensory visual-vestibular interactions on the interpretation of the visual information presented.