Multisensor Automatic Target Classification with Neural Networks

Fengzhen Wang, T. Lo, J. Litva, É. Bossé
{"title":"Multisensor Automatic Target Classification with Neural Networks","authors":"Fengzhen Wang, T. Lo, J. Litva, É. Bossé","doi":"10.1109/SSAP.1994.572531","DOIUrl":null,"url":null,"abstract":"This paper presents the multisensor data fusion for airborne target classification with artificial neural network. A feature set, which possesses the dominant characteristics of targets and has a certain dynamic range, is chosen. The entire system consists of identification nets (IN) and classification net (CN). Each identification network is used to extract a particular feature of the target, then the outputs of identification networks are fused by classification network, in which the neural network acts as a decision making processor. In the paper, multilayer perceptrons neural networks trained by back-propagation (BP) rule are discussed. In order to speed up the training or decrease the number of epoch in learning process, both momentum and adaptive learning rate methods are used. The simulation results show that the technique of automatic target classification using neural networks can achieve robust decision performance.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the multisensor data fusion for airborne target classification with artificial neural network. A feature set, which possesses the dominant characteristics of targets and has a certain dynamic range, is chosen. The entire system consists of identification nets (IN) and classification net (CN). Each identification network is used to extract a particular feature of the target, then the outputs of identification networks are fused by classification network, in which the neural network acts as a decision making processor. In the paper, multilayer perceptrons neural networks trained by back-propagation (BP) rule are discussed. In order to speed up the training or decrease the number of epoch in learning process, both momentum and adaptive learning rate methods are used. The simulation results show that the technique of automatic target classification using neural networks can achieve robust decision performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的多传感器目标自动分类
提出了一种基于人工神经网络的机载目标分类多传感器数据融合方法。选取具有目标主体特征并具有一定动态范围的特征集。整个系统包括识别网(IN)和分类网(CN)。每个识别网络用于提取目标的特定特征,然后通过分类网络对识别网络的输出进行融合,其中神经网络作为决策处理器。本文讨论了基于BP规则训练的多层感知器神经网络。为了加快训练速度或减少学习过程中的历元数,采用了动量法和自适应学习率法。仿真结果表明,基于神经网络的目标自动分类技术具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1