Skeleton Based Human Activity Prediction in Gait Thermal images using Siamese Networks

P. Srihari, J. Harikiran
{"title":"Skeleton Based Human Activity Prediction in Gait Thermal images using Siamese Networks","authors":"P. Srihari, J. Harikiran","doi":"10.1109/ICECA55336.2022.10009412","DOIUrl":null,"url":null,"abstract":"Thermal image is formed by capturing of radiation emitted by object to its surroundings and the difference in radiation of object and its surroundings. The advantages of Thermal images over Normal RGB images is the ability to visible at night time irrespective of illumination conditions and weather conditions like rain, fog, mist, and dust. Thermal images can form images in typical situations like smoke, dust, and high intensity, where the normal RGB camera fails to capture image. Human Activity Recognition in Thermal Images is still a challenging task due to less availability of Thermal Human Activity Datasets. This research work has proposed a human activity recognition system using Siamese Networks of Gait Skeleton Thermal Images. The proposed approach can train a new human activity by extracting Gait Skeleton from existing RGB videos and can be compared to a gait skeleton extracted from a Thermal video in case of utilizing very less thermal videos for human activity recognition. Thermal videos are extracted from IITR- IAR dataset and the performance is analyzed with CNN+LSTM, LRCN, Inflated 3D CNN, Siamese using accuracy and the proposed model has achieved a better accuracy when compared to CNN+LSTM, LRCN, Inflated 3D CNN.","PeriodicalId":356949,"journal":{"name":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Electronics, Communication and Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA55336.2022.10009412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal image is formed by capturing of radiation emitted by object to its surroundings and the difference in radiation of object and its surroundings. The advantages of Thermal images over Normal RGB images is the ability to visible at night time irrespective of illumination conditions and weather conditions like rain, fog, mist, and dust. Thermal images can form images in typical situations like smoke, dust, and high intensity, where the normal RGB camera fails to capture image. Human Activity Recognition in Thermal Images is still a challenging task due to less availability of Thermal Human Activity Datasets. This research work has proposed a human activity recognition system using Siamese Networks of Gait Skeleton Thermal Images. The proposed approach can train a new human activity by extracting Gait Skeleton from existing RGB videos and can be compared to a gait skeleton extracted from a Thermal video in case of utilizing very less thermal videos for human activity recognition. Thermal videos are extracted from IITR- IAR dataset and the performance is analyzed with CNN+LSTM, LRCN, Inflated 3D CNN, Siamese using accuracy and the proposed model has achieved a better accuracy when compared to CNN+LSTM, LRCN, Inflated 3D CNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨骼的步态热图像中人类活动预测的Siamese网络
热图像是通过捕获物体对周围环境的辐射以及物体与周围环境的辐射差而形成的。与普通RGB图像相比,热图像的优点是能够在夜间看到,而不受照明条件和雨、雾、雾和灰尘等天气条件的影响。热成像可以在烟雾、灰尘和高强度等典型情况下形成图像,而普通RGB相机无法捕获图像。由于热人体活动数据集的可用性较低,热图像中的人体活动识别仍然是一项具有挑战性的任务。本研究提出了一种基于步态骨骼热图像连体网络的人体活动识别系统。该方法可以通过从现有的RGB视频中提取步态骨架来训练新的人体活动,并且可以在使用很少的热视频进行人体活动识别的情况下与从热视频中提取的步态骨架进行比较。从IITR- IAR数据集中提取热视频,并使用CNN+LSTM、LRCN、Inflated 3D CNN、Siamese进行准确率分析,与CNN+LSTM、LRCN、Inflated 3D CNN相比,本文提出的模型取得了更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Artificial Flora Algorithm Based Optimal Handover Scheme for LTE-Advanced Networks Named Entity Recognition using CRF with Active Learning Algorithm in English Texts FPGA Implementation of Lattice-Wave Half-Order Digital Integrator using Radix-$2^{r}$ Digit Recoding Green Cloud Computing- Next Step Towards Eco-friendly Work Stations Diabetes Prediction using Support Vector Machine, Naive Bayes and Random Forest Machine Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1