Estimation of Driver Demand Torque using Parametric and Nonparametric Data-driven Model

A. Bhattacharjee, S. Saranya, Purushottam Kuntumalla
{"title":"Estimation of Driver Demand Torque using Parametric and Nonparametric Data-driven Model","authors":"A. Bhattacharjee, S. Saranya, Purushottam Kuntumalla","doi":"10.1109/CMI50323.2021.9362860","DOIUrl":null,"url":null,"abstract":"The complexity of vehicle dynamics is increasing due to growing demands for the inclusion of a large number of functionalities in vehicle model. New generation electronic control units (ECUs) regulate different components of powertrain to produce optimum power and torque necessary to meet the complex functional requirements. But the lookup table or map used in different ECUs e.g., engine ECU, gearbox ECU to create these functionalities are not capable enough to capture the dynamic behavior of system. Thus, effective control of vehicle by ECUs requires a model that is able to accurately predict the dynamic behavior of the system over its complete operating range. The present work proposes both parametric and nonparametric data-driven models that can replace lookup tables or maps used for the estimation of driver torque request. The driver input module estimates the driver demand torque or driver torque request. The inputs to the driver input module are engine speed and accelerator pedal. A data-driven parametric polynomial regression model and nonparametric Volterra model are developed to describe the dynamic behavior of multivariable nonlinear driver input module. The parameters of both the models are estimated using least square optimization algorithm. The input-output data taken from real vehicle dataset is used for both identification and validation of the model. The validation experiments show good fit of the predicted output with actual output. The accuracy obtained from the Volterra and polynomial regression models are 98.27% and 98.6% respectively.","PeriodicalId":142069,"journal":{"name":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI50323.2021.9362860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of vehicle dynamics is increasing due to growing demands for the inclusion of a large number of functionalities in vehicle model. New generation electronic control units (ECUs) regulate different components of powertrain to produce optimum power and torque necessary to meet the complex functional requirements. But the lookup table or map used in different ECUs e.g., engine ECU, gearbox ECU to create these functionalities are not capable enough to capture the dynamic behavior of system. Thus, effective control of vehicle by ECUs requires a model that is able to accurately predict the dynamic behavior of the system over its complete operating range. The present work proposes both parametric and nonparametric data-driven models that can replace lookup tables or maps used for the estimation of driver torque request. The driver input module estimates the driver demand torque or driver torque request. The inputs to the driver input module are engine speed and accelerator pedal. A data-driven parametric polynomial regression model and nonparametric Volterra model are developed to describe the dynamic behavior of multivariable nonlinear driver input module. The parameters of both the models are estimated using least square optimization algorithm. The input-output data taken from real vehicle dataset is used for both identification and validation of the model. The validation experiments show good fit of the predicted output with actual output. The accuracy obtained from the Volterra and polynomial regression models are 98.27% and 98.6% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数和非参数数据驱动模型的驱动需求转矩估计
由于对车辆模型中包含大量功能的需求日益增长,车辆动力学的复杂性也在不断增加。新一代电子控制单元(ecu)调节动力系统的不同组件,以产生最佳的功率和扭矩,以满足复杂的功能要求。但是,在不同的ECU(如发动机ECU、变速箱ECU)中使用的查找表或地图来创建这些功能,不足以捕捉系统的动态行为。因此,ecu对车辆的有效控制需要一个能够准确预测系统在整个工作范围内动态行为的模型。本工作提出参数和非参数数据驱动模型,可以取代用于估计驱动器扭矩请求的查找表或映射。驱动输入模块估计驱动需求扭矩或驱动扭矩请求。驾驶员输入模块的输入是发动机转速和油门踏板。建立了数据驱动的参数多项式回归模型和非参数Volterra模型来描述多变量非线性驱动输入模块的动态行为。采用最小二乘优化算法对两种模型的参数进行估计。从真实车辆数据集中获取的输入输出数据用于模型的识别和验证。验证实验表明,预测输出与实际输出吻合较好。Volterra和多项式回归模型的准确率分别为98.27%和98.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Analysis of Formalin Using UV-Vis Spectroscopy Performance Comparison of Nonlinear State Estimators for State-of-Charge Estimation of Supercapacitor IoT based Intelligent Parking Management System Fractional Order Intelligent Controller for Single Tank Liquid Level System Sign Language Detection from Hand Gesture Images using Deep Multi-layered Convolution Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1