Continuous validation of load test suites

Mark D. Syer, Z. Jiang, M. Nagappan, A. Hassan, Mohamed N. Nasser, P. Flora
{"title":"Continuous validation of load test suites","authors":"Mark D. Syer, Z. Jiang, M. Nagappan, A. Hassan, Mohamed N. Nasser, P. Flora","doi":"10.1145/2568088.2568101","DOIUrl":null,"url":null,"abstract":"Ultra-Large-Scale (ULS) systems face continuously evolving field workloads in terms of activated/disabled feature sets, varying usage patterns and changing deployment configurations. These evolving workloads often have a large impact, on the performance of a ULS system. Hence, continuous load testing is critical to ensuring the error-free operation of such systems. A common challenge facing performance analysts is to validate if a load test closely resembles the current field workloads. Such validation may be performed by comparing execution logs from the load test and the field. However, the size and unstructured nature of execution logs makes such a comparison unfeasible without automated support. In this paper, we propose an automated approach to validate whether a load test resembles the field workload and, if not, determines how they differ by compare execution logs from a load test and the field. Performance analysts can then update their load test cases to eliminate such differences, hence creating more realistic load test cases. We perform three case studies on two large systems: one open-source system and one enterprise system. Our approach identifies differences between load tests and the field with a precision of >75% compared to only >16% for the state-of-the-practice.","PeriodicalId":243233,"journal":{"name":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM/SPEC international conference on Performance engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2568088.2568101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Ultra-Large-Scale (ULS) systems face continuously evolving field workloads in terms of activated/disabled feature sets, varying usage patterns and changing deployment configurations. These evolving workloads often have a large impact, on the performance of a ULS system. Hence, continuous load testing is critical to ensuring the error-free operation of such systems. A common challenge facing performance analysts is to validate if a load test closely resembles the current field workloads. Such validation may be performed by comparing execution logs from the load test and the field. However, the size and unstructured nature of execution logs makes such a comparison unfeasible without automated support. In this paper, we propose an automated approach to validate whether a load test resembles the field workload and, if not, determines how they differ by compare execution logs from a load test and the field. Performance analysts can then update their load test cases to eliminate such differences, hence creating more realistic load test cases. We perform three case studies on two large systems: one open-source system and one enterprise system. Our approach identifies differences between load tests and the field with a precision of >75% compared to only >16% for the state-of-the-practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载测试套件的持续验证
超大规模(ULS)系统在激活/禁用功能集、不同的使用模式和不断变化的部署配置方面面临着不断变化的现场工作负载。这些不断变化的工作负载通常对ULS系统的性能有很大的影响。因此,持续的负载测试对于确保此类系统的无错误运行至关重要。性能分析人员面临的一个常见挑战是验证负载测试是否与当前字段工作负载非常相似。这种验证可以通过比较负载测试和现场的执行日志来执行。然而,执行日志的大小和非结构化性质使得没有自动化支持就无法进行这种比较。在本文中,我们提出了一种自动化的方法来验证负载测试是否与字段工作负载相似,如果不相似,则通过比较负载测试和字段的执行日志来确定它们之间的差异。性能分析人员可以更新他们的负载测试用例来消除这些差异,从而创建更真实的负载测试用例。我们在两个大型系统上进行了三个案例研究:一个是开源系统,一个是企业系统。我们的方法以>75%的精度识别负载测试和现场之间的差异,而实践状态的精度仅为>16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The taming of the shrew: increasing performance by automatic parameter tuning for java garbage collectors Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation Scalable hybrid stream and hadoop network analysis system Efficient optimization of software performance models via parameter-space pruning Real-time multi-cloud management needs application awareness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1