Modeling Hard and Soft Facts for Smes: Some International Evidence

Massimo Matthias, Michele Giammarino, G. Gabbi
{"title":"Modeling Hard and Soft Facts for Smes: Some International Evidence","authors":"Massimo Matthias, Michele Giammarino, G. Gabbi","doi":"10.1111/jifm.12108","DOIUrl":null,"url":null,"abstract":"This paper asks how well the use of quantitative and qualitative variables can improve the assessment of companies' creditworthiness and how this result can be influenced by the economic and financial peculiarities of countries. We harden qualitative variable measures to model soft information aimed at scoring microfirms, small, and medium‐sized firms. The structural survey covers Germany, Italy, and the UK in a sample of about 17 thousand companies observed during the financial crisis. Soft facts are determined within the balanced scorecard framework in order to find out the impact of customers, business processes, learning and growth, and financial perspectives. Our findings show that credit models integrating soft variables optimize the risk estimation, but estimates are country‐specific and should be tailored to the characteristics of each economic system.","PeriodicalId":233958,"journal":{"name":"European Finance eJournal","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/jifm.12108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper asks how well the use of quantitative and qualitative variables can improve the assessment of companies' creditworthiness and how this result can be influenced by the economic and financial peculiarities of countries. We harden qualitative variable measures to model soft information aimed at scoring microfirms, small, and medium‐sized firms. The structural survey covers Germany, Italy, and the UK in a sample of about 17 thousand companies observed during the financial crisis. Soft facts are determined within the balanced scorecard framework in order to find out the impact of customers, business processes, learning and growth, and financial perspectives. Our findings show that credit models integrating soft variables optimize the risk estimation, but estimates are country‐specific and should be tailored to the characteristics of each economic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中小企业的软硬事实建模:一些国际证据
本文探讨了定量和定性变量的使用在多大程度上可以改善对公司信誉的评估,以及这一结果如何受到各国经济和金融特点的影响。我们强化了定性变量测量来模拟软信息,旨在对微型公司、小型和中型公司进行评分。这项结构性调查涵盖了德国、意大利和英国,样本包括金融危机期间观察到的约1.7万家公司。软事实是在平衡计分卡框架内确定的,以便找出客户、业务流程、学习和成长以及财务前景的影响。我们的研究结果表明,整合软变量的信贷模型优化了风险估计,但估计是针对每个国家的,应该根据每个经济系统的特征进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Option-Like Fund Performance Fees in Asset Management via Monte Carlo Actuarial Distortion Pricing Cultural values of parent bank board members and lending by foreign subsidiaries: The moderating role of personal traits Deleveraging CAPM: Asset Betas vs. Equity Betas The Dynamics of Financial Policies and Group Decisions in Private Firms Money Talks: Information and Seignorage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1