Multi-source approach for crowd density estimation in still images

Sonu Lamba, N. Nain
{"title":"Multi-source approach for crowd density estimation in still images","authors":"Sonu Lamba, N. Nain","doi":"10.1109/ISBA.2017.7947682","DOIUrl":null,"url":null,"abstract":"Estimation of people density in intensely dense crowded scenes is very crucial due to perspective difference, few pixels per target, clutter and complex backgrounds etc. Most of the existing work is unable to handle the crowds of hundreds or thousands. At this level of density, one feature is not enough to estimate the total density of an image. We propose a hybrid model which relies on multiple source of information as Fourier analysis, Local binary pattern, Gray level dependence matrix (GLDM) features and Histogram of oriented gradient (HOG) for head detection to estimate the total count. Each of these features separately contribute in final total count estimation along with other statistical measures. Our approach is tested on hundred images of dense crowd annotated with 87K individuals. Experiential results validate the performance of our proposed approach by computing the total count with respect to ground truths.","PeriodicalId":436086,"journal":{"name":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2017.7947682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Estimation of people density in intensely dense crowded scenes is very crucial due to perspective difference, few pixels per target, clutter and complex backgrounds etc. Most of the existing work is unable to handle the crowds of hundreds or thousands. At this level of density, one feature is not enough to estimate the total density of an image. We propose a hybrid model which relies on multiple source of information as Fourier analysis, Local binary pattern, Gray level dependence matrix (GLDM) features and Histogram of oriented gradient (HOG) for head detection to estimate the total count. Each of these features separately contribute in final total count estimation along with other statistical measures. Our approach is tested on hundred images of dense crowd annotated with 87K individuals. Experiential results validate the performance of our proposed approach by computing the total count with respect to ground truths.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态图像中人群密度估计的多源方法
在高度密集拥挤的场景中,由于视角差异、每个目标像素较少、杂波和复杂背景等原因,对人群密度的估计是非常重要的。现有的大部分工作都无法处理数百或数千人的人群。在这种密度水平上,一个特征不足以估计图像的总密度。我们提出了一种混合模型,该模型依赖于傅立叶分析、局部二值模式、灰度依赖矩阵(GLDM)特征和定向梯度直方图(HOG)等多个信息源,用于头部检测以估计总数。这些特征中的每一个都单独地与其他统计度量一起贡献了最终总数估计。我们的方法在数百张密集人群的图像上进行了测试,这些图像标注了87K个个体。经验结果通过计算相对于基础真理的总数来验证我们提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Touch gesture-based authentication: A security analysis of Pattern Unlock An enhanced statistical approach for median filtering detection using difference image Analysis of adaptability of deep features for verifying blurred and cross-resolution images A hybrid model for CFA interpolation detection A discriminative spatio-temporal mapping of face for liveness detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1