Backchannel Generation Model for a Third Party Listener Agent

Divesh Lala, K. Inoue, T. Kawahara, Kei Sawada
{"title":"Backchannel Generation Model for a Third Party Listener Agent","authors":"Divesh Lala, K. Inoue, T. Kawahara, Kei Sawada","doi":"10.1145/3527188.3561926","DOIUrl":null,"url":null,"abstract":"In this work we propose a listening agent which can be used in a conversation between two humans. We firstly conduct a corpus analysis to identify three different categories of backchannel which the agent can use - responsive interjections, expressive interjections and shared laughs. From this data we train and evaluate a continuous backchannel generation model consisting of separate timing and form prediction models. We then conduct a subjective experiment to compare our model to random, dyadic, and ground truth models. We find that our model outperforms a random baseline and is comparable to the dyadic model despite the low evaluation of expressive interjections. We suggest that the perception of expressive interjections contribute significantly to the perception of the agent’s empathy and understanding of the conversation. The results also show the need for a more robust model to generate expressive interjections, perhaps aided by the use of linguistic features.","PeriodicalId":179256,"journal":{"name":"Proceedings of the 10th International Conference on Human-Agent Interaction","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527188.3561926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we propose a listening agent which can be used in a conversation between two humans. We firstly conduct a corpus analysis to identify three different categories of backchannel which the agent can use - responsive interjections, expressive interjections and shared laughs. From this data we train and evaluate a continuous backchannel generation model consisting of separate timing and form prediction models. We then conduct a subjective experiment to compare our model to random, dyadic, and ground truth models. We find that our model outperforms a random baseline and is comparable to the dyadic model despite the low evaluation of expressive interjections. We suggest that the perception of expressive interjections contribute significantly to the perception of the agent’s empathy and understanding of the conversation. The results also show the need for a more robust model to generate expressive interjections, perhaps aided by the use of linguistic features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第三方监听代理的反向通道生成模型
在这项工作中,我们提出了一个可以在两个人之间的对话中使用的倾听代理。我们首先进行语料库分析,确定了智能体可以使用的三种不同类型的反向通道——响应式感叹词、表达式感叹词和共享笑声。从这些数据中,我们训练和评估了一个连续的反向通道生成模型,该模型由单独的时序和形状预测模型组成。然后,我们进行一个主观实验,将我们的模型与随机、二元和基础真值模型进行比较。我们发现我们的模型优于随机基线,并且可以与二元模型相媲美,尽管对表达性感叹词的评价很低。我们认为,对表达性感叹词的感知对代理的同理心和对对话的理解有显著的贡献。研究结果还表明,需要一个更健壮的模型来生成富有表现力的感叹词,这或许可以借助于语言特征的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hype Dlive: XR Live Performance System for Improving Passenger Comfort in Autonomous Driving Talk, Listen and Keep Me Company: A Mixed Methods Analysis of Children’s Perspectives Towards Robot Reading Companions A User-Centered Evaluation of the Data-Driven Sign Language Avatar System: A Pilot Study A Computer Game-based Tangible Upper Limb Rehabilitation Device Let’s Compete! The Influence of Human-Agent Competition and Collaboration on Agent Learning and Human Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1